
VS_VP

96�����

*CTFYCTG�4GHGTGPEG�/CPWCN
4GXKUKQP�����

VLSI
Solution y

rev. 1.03 08.03.00

 2000 VLSI Solution Oy, Hermiankatu 6–8 C, FIN-33720 Tampere, Finland

Information furnished by VLSI Solution Oy is believed to be accurate and reliable.
However, no responsibility is assumed by VLSI Solution Oy for its use.

Specifications are subject to change without notice.

All rights reserved. No part of this manual may be reproduced, in any form or by any
means, without permission in writing from the copyright owner.

The descriptions contained herein do not imply the granting of license to make, use, or
sell equipment constructed in accordance therewith.

All trademarks mentioned in this document are trademarks of their respective owners.

Windows 95, Windows NT, DirectDraw, Direct3D are trademarks of Microsoft
Corporation.
AutoCAD, 3D Studio are trademarks of Autodesk, Inc.
Unix is a trademark of Unix System Laboratories, Inc.
Photoshop is a trademark of Adobe Systems, Inc.
Quake is a trademark of id Software, Inc.

rev. 1.03 08.03.00

,�� 5HYLVLRQ�+LVWRU\

From Revision 1.02 to Revision 1.03.

1. Trademark page updated.

rev. 1.03 08.03.00

,,�� 7DEOH�RI�&RQWHQWV

�� ,1752'8&7,21��� �

�� $5&+,7(&785(�� �

2.1 OVERVIEW... 7
2.2 KEY FEATURES.. 8
2.3 GEOMETRY PROCESSOR............................... 10
2.4 PRIMITIVE PROCESSOR 10
2.5 PIXEL PROCESSOR 10
2.6 PCI INTERFACE ... 11
2.7 MEMORY MANAGEMENT UNIT.................... 11
2.8 SVGA AND VIDEO REFRESH 12
2.9 VIDEO CAPTURE UNIT 12
2.10 BLOCK TRANSFER UNIT 12
2.11 INTERNAL CLOCKS 12
2.12 INTERNAL VIDEODAC 12
2.13 EXTERNAL VIDEODAC 12
2.14 EXTERNAL BIOS ROM INTERFACE 12
2.15 REGISTER MAP .. 13
2.16 SUMMARY OF REGISTERS 14

�� ,17(5)$&(6��� ��

3.1 ACCESSING INTERNAL REGISTERS............... 16
3.2 MEMORY APERTURES.................................. 16
����� /LQHDU�0RGH �� ��
����� 5DZ�0RGH�� ��
3.3 PCI BUS .. 18
����� 2YHUYLHZ�� ��
����� %XV�0DVWHU�)XQFWLRQV�DQG�&RPPDQGV ���� ��
����� %XV�0DVWHU�3URJUDPPLQJ�*XLGHOLQHV ����� ��
����� 3&,�&RQILJXUDWLRQ�6SDFH�5HJLVWHUV��������� ��
����� ,QWHUUXSWV ��� ��
3.4 SYSTEM CONTROL REGISTERS..................... 36
����� 2YHUYLHZ�� ��
����� 5HJLVWHUV �� ��
3.5 GRAPHICS MEMORY TYPE........................... 44

�� *(20(75<�352&(6625���������������������� ��

4.1 GENERAL INFORMATION.............................. 46
����� *HRPHWU\�3URFHVVRU�%XV�6WUXFWXUH ��������� ��
4.2 DATAPATH ARCHITECTURE 47
����� $ULWKPHWLF�8QLW �� ��
����� /RJLF�8QLW�� ��
����� 1RUPDOL]DWLRQ�8QLW���������������������������������� ��
����� +DUGZDUH�'LYLVLRQ�8QLW �������������������������� ��
����� 'DWD�0HPRU\��� ��
4.3 INSTRUCTION EXECUTION 54
4.4 ADDRESSING MODES................................... 56
4.5 GEOMETRY PROCESSOR REGISTERS 58

����� *HQHUDO ��� ��
����� $ULWKPHWLF�UHJLVWHUV��������������������������������� ��
����� 6WUHDP�UHJLVWHUV �������������������������������������� ��
����� ,QGH[�UHJLVWHUV��� ��
����� &RQWURO�5HJLVWHUV ������������������������������������ ��
����� 6WDWXV�UHJLVWHU ��� ��
4.6 INSTRUCTION ENCODING............................. 64
����� $ULWKPHWLF�LQVWUXFWLRQV ���������������������������� ��
����� 3DUDOOHO�0RYH�LQVWUXFWLRQV���������������������� ��
����� /RJLF�LQVWUXFWLRQV������������������������������������ ��
����� *HQHUDO�0RYH�LQVWUXFWLRQV���������������������� ��
����� %UDQFK�LQVWUXFWLRQV ��������������������������������� ��
����� 0LVFHOODQHRXV�LQVWUXFWLRQV���������������������� ��
4.7 GEOMETRY PROCESSOR EXTERNAL

INTERFACE .. 96
����� *HQHUDO�LQIRUPDWLRQ�������������������������������� ��
����� *HRPHWU\�3URFHVVRU�,QWHUIDFH�3&,

5HJLVWHU�'HVFULSWLRQ ������������������������������� ��
����� *HRPHWU\�3URFHVVRU�LQVWUXFWLRQ�FRGH

LQWHUIDFH �� ��
����� *HRPHWU\�3URFHVVRU�6WUHDP�,�2

LQWHUIDFH �� ���

�� 35,0,7,9(�352&(6625��������������������� ���

5.1 OVERVIEW .. 102
5.2 PRIMITIVE PROCESSOR REGISTERS............ 105
����� 5HG�,QWHUSRODWRU������������������������������������ ���
����� *UHHQ�,QWHUSRODWRU �������������������������������� ���
����� %OXH�,QWHUSRODWRU����������������������������������� ���
����� 7UDQVSDUHQF\�,QWHUSRODWRU�������������������� ���
����� $�7H[WXUH�8�,QWHUSRODWRU��$78������������� ���
����� $�7H[WXUH�9�,QWHUSRODWRU��$79� ������������ ���
����� %�7H[WXUH�8�,QWHUSRODWRU��%78������������� ���
����� %�7H[WXUH�9�,QWHUSRODWRU��%79� ������������ ���
����� =�6FDOH�)DFWRU��������������������������������������� ���
������ =�,QWHUSRODWRU�� ���
������ (GJH�2UGHULQJ �������������������������������������� ���
������ (GJH��,QWHUSRODWRU�������������������������������� ���
������ (GJH��,QWHUSRODWRU�������������������������������� ���
������ (GJH��,QWHUSRODWRU�������������������������������� ���
������ *ULG�5HJLVWHU��� ���
������ 3�,QWHUSRODWRU�� ���
������ 6WDUW�(QG�&RRUGLQDWHV��������������������������� ���
������ UDVWHUBH[W�5HJLVWHU �������������������������������� ���

�� 3,;(/�352&(6625������������������������������� ���

6.1 OVERVIEW .. 125
6.2 FUNCTIONAL BLOCK DIAGRAM 126
����� %XV�$GGUHVV�7DEOH��������������������������������� ���
�����),)2 ��� ���

rev. 1.03 08.03.00

����� &RHIILFLHQW�5HJLVWHUV ����������������������������� ���
����� 7HPSRUDU\�5HJLVWHUV ����������������������������� ���
6.3 SHADING PROGRAM FORMAT.................... 129
6.4 SHADING INSTRUCTIONS 131
6.5 PIXEL PROCESSOR REGISTERS................... 141
6.6 PIXEL PROCESSOR UNIT MEMORY

BLOCKS... 150
6.7 VS_VP BUMP MAPPING PROGRAMMING

GUIDELINES... 150

�� &/2&.�6<17+(6,6�$1'
&21752/ �� ���

7.1 OVERVIEW .. 152
7.2 PROGRAMMING ... 152

�� 9*$�&25(��� ���

8.1 INTRODUCTION.. 154
8.2 VGA MEMORY AND REGISTER MAPPING . 155
����� ,QWURGXFWLRQ��� ���
����� 9*$�5HJLVWHU�PDSSLQJ�������������������������� ���
����� 9*$�0HPRU\�0DSSLQJ ������������������������� ���
8.3 VGA SUBSYSTEM CONFIGURATION.......... 158
8.4 VGA CLOCK CONFIGURATION.................. 159
����� ,QWURGXFWLRQ��� ���
����� +RVW�,QWHUIDFH�� ���
����� 9LGHR�,QWHUIDFH�������������������������������������� ���
8.5 VGA INTERRUPT GENERATION................. 160
8.6 VGA REGISTERS....................................... 160
����� *HQHUDO�5HJLVWHUV���������������������������������� ���
����� 6HTXHQFHU�5HJLVWHUV ������������������������������ ���
����� &57&�5HJLVWHUV ������������������������������������� ���
����� *UDSKLFV�5HJLVWHUV �������������������������������� ���
����� $WWULEXWH�&RQWUROOHU�5HJLVWHUV ��������������� ���
����� &RORU�3DOHWWH�5HJLVWHUV ������������������������� ���

�� 9,'(2�&21752/ ���������������������������������� ���

9.1 OVERVIEW .. 208
9.2 REFRESH TIMING....................................... 208
9.3 640 × 480 CALCULATION EXAMPLE.......... 209
9.4 VIDEO INTERFACE REGISTERS................... 211

��� 79�287387�81,7 ���������������������������������� ���

10.1 OVERVIEW .. 217
10.2 USAGE... 217
10.3 TV OUTPUT UNIT REGISTER 217

��� 9,'(2�&$3785(�81,7 ������������������������ ���

11.1 OVERVIEW .. 219
11.2 USAGE... 219
11.3 VIDEO CAPTURE UNIT INPUTS................... 219
11.4 VIDEO CAPTURE UNIT REGISTERS 220

��� %/2&.�75$16)(5�81,7 ������������������������

12.1 OVERVIEW ...222
12.2 USAGE ...222
12.3 BLOCK TRANSFER UNIT REGISTERS...........222

��� ,17(51$/���(;7(51$/�'$& ����������������

��� $33/,&$7,21�127(6������������������������������

14.1 PCI BUS RERFERENCE DESIGN227
������ ,QWURGXFWLRQ ��
������ 3RZHU�8S�&RQILJXUDWLRQ�6XPPDU\ ����������
������ &RQWHQW�RI�(3520�����������������������������������
������ 3&,�%XV�,QWHUIDFH �������������������������������������
������ 0HPRU\�,QWHUIDFH��������������������������������������
������ 0RQLWRU�,QWHUIDFH��������������������������������������
������ 3RZHU�'LVWULEXWLRQ�DQG�&RQGLWLRQLQJ ������
������ &ORFN�6\QWKHVL]HU��������������������������������������

��� 3,12876�$1'�6,*1$/
'(6&5,37,216��

15.1 PINOUT ..231
15.2 SIGNAL DESCRIPTIONS233
������ ([WHUQDO�'$&�6LJQDOV�������������������������������
������ 3//�6LJQDOV���
������ ,QWHUQDO�9LGHR�'$&�6LJQDOV ���������������������
������ 0LVFHOODQHRXV�6LJQDOV�������������������������������
������ $�0HPRU\�6LJQDOV ������������������������������������
������ %�0HPRU\�6LJQDOV ������������������������������������
������ 3&,�%XV�6LJQDOV��
������ 6XSSO\�6LJQDOV���

��� (/(&75,&$/�63(&,),&$7,216�����������

16.1 ELECTRICAL CHARACTERISTICS AND

OPERATING CONDITIONS242
������ $EVROXWH�0D[LPXP�&RQGLWLRQV �����������������
������ '&�2SHUDWLQJ�&RQGLWLRQV�������������������������
������ *HQHUDO�6SHFLILFDWLRQV������������������������������
������ (OHFWULFDO�6SHFLILFDWLRQV ���������������������������
16.2 TIMING PARAMETERS243
������ 3&,�,QWHUIDFH ��
������ 9LGHR�&DSWXUH���
������ 0HPRU\�,QWHUIDFH��������������������������������������
������ 9LGHR�,QWHUIDFH��

���)857+(5�5($',1*6 ������������������������������

��� ,1'(;���

rev. 1.03 08.03.00

�

��� ,QWURGXFWLRQ
This document gives an overview description of the architecture of 8.5+�5QNWVKQP’s 96B93
VS25203 3D graphics accelerator. The document contains 18 chapters.

Chapter 1 is introduction of this document.
Chapter 2 gives some general information about the architecture of VS25203.
Chapter 3 describes the interfacing registers, graphics memory and the PCI bus.
Chapter 4 presents the Geometry Processor.
Chapter 5 describes the Primitive Processor
Chapter 6 describes the Pixel Processor.
Chapter 7 gives some information on how to program the core and video clocks of
VS25203.
Chapter 8 describes the VGA -block.
Chapter 9 describes how to calculate screen parameters for video registers, using a screen
size of 640 × 480 pixels as an example.
Chapter 10 gives information about TV-output and its usage.
Chapter 11 provides information about Video Capture unit.
Chapter 12 describes the block transfer unit and its operation.
Chapter 13 lists the main features of the DAC.
Chapter 14 provides some board level application information.
Chapter 15 describes the pin layout and defines the pin signals for 3.3 V system.
Chapter 16 describes the electrical characteristics of the device for 3.3 V system.
Chapter 17 lists a few references for further readings.
Chapter 18 presents the index list.

rev. 1.03 08.03.00

�

��� $UFKLWHFWXUH

���� 2YHUYLHZ
VS25203 is a member of 8.5+�5QNWVKQP’s 96B93 family of highly integrated,
programmable, and high performance 3D graphics accelerators. It is designed for the
acceleration of games, 3D applications and user interfaces. It offers full compatibility with
the emerging 3D standards including Direct3D

TM

 for Windows 95
TM

. And OpenGL
TM

 for
Windows NT

 TM

.

VS25203 integrates on a single chip the Primitive Processor, Pixel Processor, Geometry
Processor, PCI bus master interface, memory management unit, video refresh logic, VGA,
Block Transfer Unit, clock synthesizer and true-color DAC.

The features of VS25203 form a solid base, on which support for different 3D APIs can
be built easily. A full 3D graphics system requires only memory, in addition to VS25203.
A low cost system can be constructed with two 256K × 32 SGRAMs.

VS25203 is a single chip implementation of the 3D rendering pipeline. The primitives are
first rasterized in the Primitive Processor. The resulting individual pixels are sent to the
Pixel Processor, which writes these on the screen through the memory management unit.
The chip also contains a PCI interface for communicating with the host processor.

PCI Bus BIOS ROM

PCI Interface

Primitive Clock
Processor SVGA Synthesizer

Block Geometry Core Video Video In
Transfer Processor Capture

Unit Pixel Video DAC CRT / TV
Processor Interface TV Out

Memory Manager

SGRAM / SDRAM / EDORAM

rev. 1.03 08.03.00

�

���� .H\�)HDWXUHV

5HQGHULQJ
Programmable pixel pipeline
User specifiable blending
Perspective correct true-color Gouraud lighting
Perspective correct transparency
Perspective correct fog
Perspective correct texture mapping
Multiple simultaneous textures
Environment mapping
Bump mapping
Stencil operations
Logic operations
Specular highlights
Properly handled lighted textures
Rasterized screen door transparency
Destination blending for transparency effects
Fog and depth cue with vertex level control

7H[WXUHV
Texture magnification filtering with point sampling or bilinear filtering
Texture minification filtering with point sampling or MIP mapping
Trilinear filtering possible
Texture sizes from 16×16 pixels to 2048×2048 pixels (non-square supported)
Amount of texture maps limited only by available memory
Texture can be looped or have a solid color border
RGB map formats: 32-bit RGBA (32-bit frame buffer) and 16-bit RGB and 16-bit RGBA
YUV map formats: 8-bit alpha + 24-bit VYU (YUV 4:4:4); 32-bit YVYU (YUV 4:2:2)
Indexed map formats: 8-bit and 4-bit
Indexed maps have an internal 256 color 24-bit palette (RGBA 6:6:6:6)
Full blending and filtering possible with indexed maps
Real time texture paging and animation
Rendering directly to texture maps possible

0HPRU\
2-32 Mbytes of SDRAM, SGRAM or EDO DRAM supported
Memory bus width 64 bits or 32 bits
Memory bandwidth up to 800 MBytes/sec with 64-bit bus
Unified memory architecture for frame buffer and textures

)UDPHEXIIHU
Virtual resolutions up to 2048 × 2048 pixels
24-bit or 16-bit color (dithering supported)
24-bit or 16-bit depth buffer
1-bit stencil mask
Support for double and triple buffering and stereo imaging

rev. 1.03 08.03.00

�

69*$�DQG�9LGHR�5HIUHVK
100% IBM compatible VGA unit
Support all the existing modes

Display resolutions from 320 × 200 to 1600 × 1200 pixels
Internal video refresh logic
Internal programmable clock generator (up to 200MHz)
Internal true-color DAC (up to 200MHz pixel clock)
TV-output with configurable flicker filter

*HRPHWU\�3URFHVVRU
3-issue VLIW architecture
32-bit fixed point vector datapath
Block floating point support
Hardware division unit
Integrated 3 × 128 words 2-port SRAM data memory
4-way set associative instruction cache of 4 × 128 word blocks

9LGHR�&DSWXUH�8QLW
8-bit 4:2:2 YUV ITU-R BT.656-3

%ORFN�7UDQVIHU�8QLW
Memory copy and fill operations
Supports basic bit copy operations

3K\VLFDO�&KDUDFWHULVWLFV
304-pin BGA packaging
200 MHz operation
I/O interface at 5/3.3V

&RPSDWLELOLW\
Drivers for Microsoft Windows 95
Drivers for Microsoft Windows NT 4.0
Drivers for DirectDraw and Direct3D (immediate mode)
Drivers for OpenGL for Windows NT

(VWLPDWHG�3HDN�3HUIRUPDQFH�(with 300MHz Pentium II)
1,000,000 shaded, 16bpp textured 25 pixel triangles per second
1,000,000 shaded, 16bpp textured, Z-buffered 25 pixel triangles per second
Bilinear pixel fill rate of 60,000,000 pixels per second

rev. 1.03 08.03.00

��

���� *HRPHWU\�3URFHVVRU
The Geometry Processor can be used to accelerate any calculations related to the data
stored in the external graphics memory. Normally the task of the Geometry Processor is to
process a data stream and calculate values to the Primitive Processor registers.

The Geometry Processor is based on 3-issue VLIW architecture with a packed 32-bit
instruction word. It has three Arithmetic Units and additional units for hardware division,
logic operations and other tasks. The arithmetic units have three cycle pipelines. As usual
for a VLIW processor, the architecture and pipeline in the Geometry Processor are visible
to the programmer, and one must take into account all the pipeline effects. This enables
one to write maximally efficient code, but requires more care in programming.

The processor also has three integrated data memories, so that there is no need to use the
external graphics memory during the calculations. The program that controls the
Geometry Processor is given by the user and is stored in the external graphics memory.
The program is cached into an on-chip instruction cache.

���� 3ULPLWLYH�3URFHVVRU
The Primitive Processor calculates the individual pixels which form each primitive and
forwards them to the Pixel Processor. Primitives can be triangles, lines or 2D regions.
They are described with their edges and shading information. All these are stored to the
Primitive Processor registers by the host processor.

The Primitive Processor determines all pixels that are inside the primitive and calculates
the different properties for them. The pixels have 8 properties which are all interpolated in
parallel. They can be used as color (R,G,B), transparency, fog intensity, specular intensity,
primary texture coordinates (U,V) and secondary texture coordinates (U2,V2).

What really affects the resulting image quality is the accuracy with which this process is
carried out. Perspective correction is needed for realistic results and there are no sacrifices
in this area. All properties including color, transparency, and fog - not just the texture as
in most other 3D systems - are interpolated with full perspective correction without
performance restrictions. This guarantees that lighting and texture will fit together
seamlessly.

���� 3L[HO�3URFHVVRU
The Pixel Processor performs visibility checking (using the Z buffer), texture data
fetching and transparency and color blending. It receives as input a list of pixels along
with their properties from the Primitive Processor and writes the resulting colors as an
output to the local framebuffer memory.

All calculations in the pixel pipeline are performed with true-color accuracy (24-bit color,
8-bit transparency). The processor can be used for overlay surface color, which can be
combined from multiple textures, diffuse light intensity and specular light intensity. The
lights can also be independently colored without a performance loss. In addition, special
effects including fog, environment mapping and bump mapping are supported in
hardware.

rev. 1.03 08.03.00

��

In order to maximize image quality without maximizing memory usage, a wide variety of
texturing methods are supported. The textures can range from 16 × 16 pixels with 4 bit
indexed color, right up to 2048 × 2048 pixels, and can be of full 32 bit true-color quality.
For indexed textures, the Pixel Processor has an internal 256 color RGBA palette.

The quality can be further increased with texture filtering, as both MIP-mapping and
bilinear filtering are directly supported (also in indexed modes). Because of
programmability, trilinear filtering is also possible.

There are many different ways in how the pixel properties can be used to derive the final
pixel color. So as not to impose any strict limits, the Pixel Processor is fully
programmable. The sequence of texture, blending and control operations can be specified.
In addition, the pipeline works in parallel with multiple pixels; this guarantees
performance even for more complex shading settings.

The resulting pixel color can also be combined with the previous color on the screen. It
makes transparency effects possible. In case the display format used is 16-bit color, it is
also possible to dither the output (4 × 4 ordered dither) for better quality.

While programmers can do any kinds of effects they want in software, they are often
limited by hardware which lowers their choices considerably so that the needed speed
boost can be obtained. With 96B93 VS25203, it has been an important design criterion to
make the hardware as configurable as possible. As a result, it is possible to generate
effects that were only possible previously with advanced software rendering packages,
and still do them all in real-time.

���� 3&,�,QWHUIDFH
The 96B93 VS25203 can be directly connected to a PCI bus without any extra logic. The
PCI interface provides the host with linear access to the frame buffer and registers (which
are memory mapped). In addition, bus mastering is supported so that textures and
individual triangles can be read from the main memory without host processor overhead.

���� 0HPRU\�0DQDJHPHQW�8QLW
All memory is accessed through the Memory Management Unit. This has the advantage
that different types of data such as textures and display data can all share the same
memory; memory usage can thus be optimized separately for each application. Games, for
example, require a lot of texture memory, whereas CAD requires a lot of resolution.
For maximum performance, the memory interface supports SDRAM memory, which can
achieve a 800MB/s transfer rate (using 64-bit bus). In addition, a reduced bus width (32
bits) is possible if less memory is desired. It is also possible to use SGRAM, which makes
a 2Mbyte configuration with good performance possible. Finally, for a low cost solution it
is possible to use EDO DRAM.

The memory management unit also generates commands, which initiate the self-refresh
cycles to the SDRAM, SGRAM or EDO DRAM.

rev. 1.03 08.03.00

��

���� 69*$�DQG�9LGHR�5HIUHVK
VS252 SVGA Core is 100% compatible with original IBM VGA implementation. It takes
use of PCI interface to provide optimizations for standard VGA 256-color mode and
extended 8 bit graphics modes. It extends the VGA CRTC counters for larger display
modes, and provides linear frame buffer and 64 bit sequencer model.

The video refresh logic supports 16-bit hi-color and 24-bit true-color display formats with
resolutions from 320 × 200 to 1600 × 1200. With the programmable clock generator,
refresh rates can be adjusted without limitations.

TV-output is also supported with configurable flicker filter.

���� 9LGHR�&DSWXUH�8QLW
The independent video capture unit reads 4:2:2 YUV in the ITU-R BT.656-3 format and
stores it into the memory for further use.

����� %ORFN�7UDQVIHU�8QLW
The internal Block Transfer Unit perfoms area copy and fill operation as well as bit copy
operations.

����� ,QWHUQDO�&ORFNV
VS25203 contains two phase-locked-loop (PLL) frequency synthesizers, one for the video
clock and one for the processor.

����� ,QWHUQDO�9LGHR'$&
VS25203 contains an internal triple 8-bit VideoDAC, which has a maximum operation
frequency of 200 MHz.�Internal VideoDAC

����� ([WHUQDO�9LGHR'$&
It is also possible to use external VideoDAC with the following features:

Triple 8-bit D/A converters
TTL compatible inputs
construction optionally +5 V or +3.3 V.

VS25203 provides pins for an external VideoDAC: 8bit data bus for each color (RGB)
and all essential synchronization and blanking signals; see page 233.

����� ([WHUQDO�%,26�520�,QWHUIDFH
The eight-bit BIOS ROM contains power-on initialization and mode setup routines. PCI
configuration power-on initialization data are also located in BIOS ROM. BIOS ROM
shares pins with the external VideoDAC.

rev. 1.03 08.03.00

��

����� 5HJLVWHU�0DS

9LGHR�&DSWXUH

$SHUWXUH�������0%�

)TCRJKEU�/GOQT[

$SHUWXUH�������0%�

���0

���0

�

%QPVTQN�4GIKUVGTU

��

���

���

���

���

��

��

�

��

���

��

6\VWHP�&RQWURO

9LGHR�&RQWURO

3ULPLWLYH�3URFHVVRU

3L[HO�3URFHVVRU��

6KDGLQJ�SURJUDP

3L[HO�3URFHVVRU���

7H[WXUH�3DOHWWH

5HVHUYHG

6QVCN�CEEGUUKDNG�2%�OGOQT[�URCEG���)$�

Register 5 (ctrl_reg_bar) defines the base address
of the Control Registers and register 4
(gr_ram_bar) defines the base address of the
Graphics Memory.

1�%��Both base address registers and the
alignment of memory areas are defined by PCI
Spec 2.1. Base addresses are typically set up by
the operating system / BIOS.

3L[HO�3URFHVVRU

9*$�6KDGRZ

%ORFN�7UDQVIHU�8QLW

��

��

��

���

���

*HRPHWU\�3URFHVVRU

rev. 1.03 08.03.00

��

����� 6XPPDU\�RI�5HJLVWHUV
4GIKUVGT�CFFTGUU 1HHUGV� 4GIKUVGT�PCOG

3L[HO�3URFHVVRU� � 0004h FRHIBUHJ�

� 0008h FRHIBUHJ�

� 000Ch FRHIBUHJ�

� 0010h FRHIBUHJ�

� 0014h DWH[BFRQI�

� 0018h DWH[BFRQI�

� 001Ch EWH[BFRQI�

� 0020h EWH[BFRQI�

� 0024h EDVHBDGGU

�� 0028h GLWKHU

�� 002Ch PRGXODWLRQ

�� 0030h SSXBPRGH

�� 0034h IUDPHBPRGH

�� 0038h SSXBFRGHBVWDUW

�� 003Ch SDOHWWHBEDVH

9*$�6KDGRZ ������� �9*$�VKDGRZ�UHJLVWHUV

9LGHR�&DSWXUH �� 007Ch FDSWBEDVHBFRQI

�� 0080h FDSWBZBK

9LGHR�5HIUHVK �� 0084h YLGHRBZLGWKBKHLJKW

�� 0088h VFUHHQBZLGWKBKHLJKW

�� 008Ch YLGHRBYEODQN

�� 0090h YLGHRBKEODQN

�� 0094h YLGHRBYV\QF

�� 0098h YLGHRBKV\QF

�� 009Ch YLGHRBEDVHBFRQI

�� 00A0h YLGHRBELWBFRQILJ

�� 00A4h UHVHUYHG

6\VWHP�FRQWURO �� 00A8h PDBFPGBDGGU

�� 00ACh PDVWHUBVWDWH

�� 00B0h PDBLQWBDGGU

�� 00B4h PDBH[WBDGGU

�� 00B8h UHVHUYHG

�� 00BCh UHVHUYHG

�� 00C0h VWDWXV

�� 00C4h UHIBUHJ

�� 00C8h GHEXJBUHJ

�� 00CCh LRBUHJ

�� 00D0h H[WBLRBUHJ

�� 00D4h H[WBLRBUHJ�

�� 00D8h PHPBDSW�BFIJ

�� 00DCh PHPBDSW�BFIJ

%ORFN�7UDQVIHU�8QLW �� 00E0h EOWBVUFBVWUG

�� 00E4h EOWBWJWBVWUG

�� 00E8h EOWBIJBFRORU

�� 00ECh EOWBEJBFRORU

�� 00F0h EOWBSDUDPV

�� 00F4h EOWBVUFBDGGU

�� 00F8h EOWBWJWBDGGU

�� 00FCh EOWBVL]H

rev. 1.03 08.03.00

��

4GIKUVGT�CFFTGUU 1HHUGV� 4GIKUVGT�PCOG

3ULPLWLYH�3URFHVVRU� �� 0100h FUBLQLW

�� 0104h FUBG\

�� 0108h FUBG[

�� 010Ch FJBLQLW

�� 0110h FJBG\

�� 0114h FJBG[

�� 0118h FEBLQLW

�� 011Ch FEBG\

�� 0120h FEBG[

�� 0124h FWBLQLW

�� 0128h FWBG\

�� 012Ch FWBG[

�� 0130h DWXBLQLW

�� 0134h DWXBG\

�� 0138h DWXBG[

�� 013Ch DWYBLQLW

�� 0140h DWYBG\

�� 0144h DWYBG[

�� 0148h EWXBLQLW

�� 014Ch EWXBG\

�� 0150h EWXBG[

�� 0154h EWYBLQLW

�� 0158h EWYBG\

�� 015Ch EWYBG[

�� 0160h]BVKU

�� 0164h]BLQLW

�� 0168h]BG\

�� 016Ch]BG[

�� 0170h HGJHBRUGHU

�� 0174h HGJH�BLQLW

�� 0178h HGJH�BG[

�� 017Ch HGJH�BG\

�� 0180h HGJH�BLQLW

�� 0184h HGJH�BG[

�� 0188h HGJH�BG\

�� 018Ch HGJH�BLQLW

��� 0190h HGJH�BG[

��� 0194h HGJH�BG\

��� 0198h JULGBUHJ

��� 019Ch SBLQLW

��� 01A0h SBG\

��� 01A4h SBG[

��� 01A8h [BLQLW

��� 01ACh \BLQLW

��� 01B0h \BHQG

��� 01B4h UDVWHUBH[W

3L[HO�3URFHVVRU �������� &RGH

��������� 7H[WXUH�3DOHWWH

*HRPHWU\�3URFHVVRU �������� *HRPHWU\�3URFHVVRU�UHJLVWHUV

rev. 1.03 08.03.00

��

��� ,QWHUIDFHV

���� $FFHVVLQJ�,QWHUQDO�5HJLVWHUV

The VS25203 internal register ranges are available for access through the PCI interface.
The registers are mapped to the PCI memory starting from the memory location specified
by the ctrl_reg_bar register in PCI configuration space, see page 27.

Because all the registers are 32bit registers, the index of each register must be multiplied
by four to get the relative memory address. For example if the PCI BIOS has configured
the VS25203 ctrl_reg_bar register to the value E0000000h then the cr_init (64)
register (described in page 106) is mapped to the address E0000000h + 64 × 4 =
E0000100h.

5DQJH)XQFWLRQ
0-15 Pixel Processor / General
20-29 VGA Shadow
31-32 Video Capture
33-41 Video Refresh
42-55 System Control
56-63 Block Transfer Unit
64-109 Primitive Processor
128-159 Pixel Processor / Code
192-197 Geometry Processor
256-511 Pixel Processor / Texture Palette

Register ranges not covered or not mentioned above should be considered as UHVHUYHG and
not used.

���� 0HPRU\�$SHUWXUHV

The PCI interface maps the graphics card memory to the PCI bus. Different translations
including linear mode and raw frame buffer mode are available.

In order to implement the interfaces to other PCI multimedia devices VS25203 provides
two simultaneous apertures to the memory (as suggested by the PCI Multimedia Design
Guide revision 1.0). It is possible to configure the apertures to provide different views for
the memory.

Linear mode is the similar to standard VESA VGA memory organizations however, when
used as a VESA 8 bit linear frame buffer the memory should be accessed in raw mode.
This applies to the 8 bit modes only.

Raw mode is VS25203’s internal mode for storing data. Raw mode is different from linear
mode in that data in raw mode is organized in small 2D regions (e.g. 64 × 16 × 16 bits for
hi-color, or 64 × 8 × 32 bits for true-color) so as to take advantage of fast accesses to
active rows in a SDRAM to reduce page misses; an active SDRAM row is typically 2048
bytes.

rev. 1.03 08.03.00

��

For hi-color (16-bit) pixels, the pixel block is 64 pixels in the horizontal direction, and 16
pixels in the vertical direction, and each pixel is 16 bits. But for 32-bit pixels (i.e. 24-bit
color + 8-bit transparency) and depending on the memory configuration used, it is
typically 64 pixels wide by 8 pixels high to make it fit into 64 × 8 at 4 bytes per pixel to
give 2048 bytes.

Note that the memory image of the screen is allocated according to integral multiples of
the pixel block size. Depending on the screen resolution chosen, the visible area on the
screen may be smaller.

For example, to be able to use frame buffer as a texture map, all data must be in the same
mode to keep the operations straightforward. In order to see the internal frame buffer
format through the PCI bus, the aperture can be configured to convert from raw to linear
mode. And to do this, the aperture needs the information of the number of 2048-byte
blocks which the screen has in the vertical direction, so that the correct amount of raw
mode memory can be skipped when moving from one pixel position to the next
neighboring one on the screen. The apt_width field of the mem_apt0_cfg and
mem_apt1_cfg registers defines the resulting linear mode row length.

The graphics memory is accessible through a 32MB memory window which is located as
specified by the gr_ram_bar register, page 26. The uppermost bit of the address in the
memory window selects the memory aperture which is used.

������ /LQHDU�0RGH
If the aperture selected is in the linear frame buffer mode then the address is first split to
x-coordinate and y-coordinate values for the frame buffer (or texture map) memory. The
address splitting is done based on the aperture_width register value. Address is first
zero-level-compensated with gr_ram_bar�register.

������ 5DZ�0RGH
If the aperture selected is in raw mode then the address is used to access the local graphics
memory. In order to support memory configurations larger than 16MB the value of
apt_addr field × 2048 can be used to specify the start address of the graphics memory
within the aperture; see registers 54 and 55 on page 44.

rev. 1.03 08.03.00

��

��

��

��

��

��

��

��

��

��

���

���

���

���

���

���

���

���

���

���

���

���

���

��

��

6FUHHQ�VL]H�����[�����SL[HOV

���[����SL[HOV�

���ELWV�SHU�SL[HO

TJKI� ���

In raw mode, the screen is split on 64-pixel-column × 32-pixel-row pixel blocks. Blocks
are arranged on the screen as shown. The second block is situated below the first one and
so on. Depending on screen size, there are different number of blocks on the screen. In the
640 × 480 example, there are 10-block-columns × 15-block-rows = 150 blocks. Within a
block, pixels are arranged so that the second pixel is on the right hand side of the first one
and the 65th pixel is below the first one. 16- and 32-bit data is arranged in memory as
follows:

Pixel 0 Pixel1
B0 G0 R0 T0 B1 G1 R1 T1

byte in memory 0 1 2 3 4 5 6 7
32 bit mode B0 G0 B1 G1 R0 T0 R1 T1

16 bit mode RGB0 RGB1 RGB2 RGB3

���� 3&,�%XV

������ 2YHUYLHZ
VS25203 has a PCI bus interface which conforms to the PCI local bus specification
Revision 2.1, see page 246.

The PCI interface of VS25203 contains two base address registers. One register is used to
map the internal registers and user controllable internal memories of VS25203 to the PCI
bus (register 5, page 27). And the other is used for mapping the graphics memory to the
PCI bus (register 4, page 26). See also the page 13. These base addresses are initialized by
the PCI BIOS (or the operating system) during boot-up.

rev. 1.03 08.03.00

��

PCI bus interface feature summary:

- Fast DEVSEL# assertion

- When acting as a PCI target for write operations, the target does not typically
generate wait states. There are no wait states for register writes, but there are in some
cases of memory operations.

- Memory on the graphics card is accessible using two independent apertures as
suggested by PCI Multimedia Design Guide revision 1.0.

- Memory apertures do not perform color space conversions; YUV conversion is done
within the Pixel Processor.

- VS25203 supports the conversions required for the full interoperability level in PCI
Multimedia Design Guide rev. 1.0.

������ %XV�0DVWHU�)XQFWLRQV�DQG�&RPPDQGV

The VS25203 can perform the following operations independently as a PCI master:

- read sequences of triangle parameters for the rendering engine
- upload data for textures and other images to the graphics memory
- synchronize the PCI bus master operation to the operation of the rendering engine.

PCI bus mastering is used as follows:

- initialize bus master command stream to system memory (This refers to host main
memory. It is NOT recommended that the graphics board memory be used for this
purpose)

- load the start address of the bus master command stream to PCI master command
address (42) register (ma_cmd_addr)

- write a non zero value to the highest byte of PCI master state (43) register
(master_state)

- use PCI master state (43) register (master_state) to observe when the PCI bus
master operation is completed.

Notice that all the addresses referred to in PCI bus mastering are physical addresses.
Under virtual memory operating systems like UNIX, Windows 95 and Windows NT,
programs typically use virtual memory addresses which must be mapped to physical
addresses. Special care must also be given to continuously allocated virtual memory
which may not correspond to a continuous block of physical memory.

VS25203 provides the following stream commands as a PCI master. Note that the
example sections contain only minimal parts of the whole stream program.

rev. 1.03 08.03.00

��

GLUHFW�FRPPDQG 3&,�PDVWHU�VWUHDP ��������RSFRGH���K

'HVFULSWLRQ� Loading values to VS25203 internal registers. Previously known as regload.

&RPPDQG�IRUPDW� 01aaaabb aaaa is the register_address. bb is register_count. Moves next bb 32-
bit values of the bus master stream to registers of VS25203, beginning
with register aaaa.

GLUHFW�FRPPDQG
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01h register_address register_count
register_value_1
register_value_2
register_value_3

…
register_value_n

6SHFLDO� It is important to synchronize register loading between triangles with jump or wait
commands.

([DPSOH�

.

.

.
0100402Dh

value for register 64
value for register 65

.

.

.
value for register 108

The direct command (01h) loads 45 (2Dh) register values to the registers of
VS25203, beginning at cr_init (64 = 40h) register. 32-bit register values are located
after the command line. Note that in this example the last register value is for the
y_end (108) register.

rev. 1.03 08.03.00

��

MXPS�FRPPDQG 3&,�PDVWHU�VWUHDP ��������RSFRGH���K

'HVFULSWLRQ� Jump conditionally to the specified address when the specified condition is met. This is
used for transferring the point where the stream is interpreted to another area in memory.
It is also used for synchronizing the PCI master operation with the internal state of the
VS25203, for example, to wait until the previous triangle is rendered. It can also be used
to generate an interrupt request.

&RPPDQG�IRUPDW� 02iXaabb Wait until the condition is true and then jump to address
jjjjjjjj jjjjjjjj.The condition is given by:

(status[7:0] xor flag_xor) and flag_mask == 00h)
where status is the status (48) register.

MXPS�FRPPDQG
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

02h i reserved flag_mask flag_xor
jump_address

6SHFLDO� If the interrupt bit i (bit 23) is one, an interrupt is generated when the jump command has
been read from the bus master stream. In other words, interrupt is generated when the bus
master encounters the jump command, not when the condition is true. X is a reserved field
and should be treated as zero.
The execution is halted at the jump command until the condition is true. After the
condition is true, the execution continues at the address given by jump_address. Notice
that both words of this command are read by the PCI mastering logic before the waiting
for the flag values start.

([DPSOH�

.

.

.
02800303h
00020000h

.

.

.

The stream program waits until the condition: 03h and (03 xor status[7:0]) == 0 is
true and then jumps to address 20000h which is specified right after the command
line. Note that this address is an absolute physical address. The program also causes
an interrupt since the i-field (bit 23) is one.

6HH�DOVR� Status (48) register, page 39.

rev. 1.03 08.03.00

��

UHDG�FRPPDQG 3&,�PDVWHU�VWUHDP ��������RSFRGH���K

'HVFULSWLRQ� Transfers data from main memory address or from another memory mapped PCI device to
VS25203-based card. It is used for copying memory data from the host main memory to
the graphics board memory. This can be used, for example, for uploading textures. Notice
that the PCI interface aperture mapping functions can be utilized with the read command.
Also, the destination address is an address on VS25203; it is not a PCI bus physical
address.

&RPPDQG�IRUPDW� 03aaaaaa Reads aaaaaa (read_count) 32-bit words (not bytes)
bbbbbbbb from PCI memory beginning with external source
cccccccc address cccccccc and writes them to memory

beginning with internal destination address bbbbbbbb.

UHDG�FRPPDQG
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

03h read_count
internal_address
external_address

6SHFLDO� It should be noted that bus mastering is not an especially effective way to move data
between locations on the local graphics memory. It is targeted for moving data from the
host CPU main memory or from other PCI boards/devices to VS25203 memory.

([DPSOH�

.

.

.
03010000h
000FF000h
0B100000h

.

.

.

The program transfers a 256KB data block. Destination address is FF000h and source
address is B100000h.

rev. 1.03 08.03.00

��

ZDLW�FRPPDQG 3&,�PDVWHU�VWUHDP ��������RSFRGH���K

'HVFULSWLRQ� Similar to the jump command. But instead of jumping, it continues to read the current
command stream without a jump. The wait command is used for synchronizing the PCI
master operation with the internal state of the VS25203, for example, to wait until the
previous triangle is rendered. It can also be used to generate an interrupt request.

&RPPDQG�IRUPDW� 04iXaabb Wait until the condition is true and then continues the stream
processing from the next instruction. The condition is given by:
(status[7:0] xor flag_xor) and flag_mask == 00h)
where status is the status (48) register.

ZDLW�FRPPDQG
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

04h i reserved flag_mask flag_xor

6SHFLDO� If the interrupt bit i (bit 23) is one, an interrupt is generated when the wait command has
been read from the bus master stream. In other words, interrupt is generated when the bus
master encounters the wait command, not when the condition is true. X is a reserved field
and should be treated as zero.
The execution is halted at the wait command until the condition is true. After the
condition is true, the execution continues at the stream location following the address of
the wait command.

KDOW�FRPPDQG 3&,�PDVWHU�VWUHDP ��������RSFRGH���K

'HVFULSWLRQ� Halts PCI bus master operation. It is typically used as the last command in the PCI master
command stream.

&RPPDQG�IRUPDW� 80000000h

JCNV�EQOOCPF
�� � � � � � � � � � �

80h reserved

([DPSOH�

.

.

.
80000000h

.

.

.

When the stream program reaches the halt command, the PCI bus master halts its
operation and its stream execution.

rev. 1.03 08.03.00

��

������ %XV�0DVWHU�3URJUDPPLQJ�*XLGHOLQHV

Some guidelines for using PCI bus mastering are as follows:

- Use the direct command to load a single register or a group of registers.
- Use jump or wait to synchronize and control program flow within the DMA buffer.
- wait is a command similar to jump. It continue to run from the next address when

the status is met, so it does not contain the jump address.
- Use the interrupt and the halt command to synchronize with the application
- Make sure the interrupt and the halt command are put in place before starting DMA.
- The interrut handler should check that DMA transfer is completed by polling MSB

byte of register 43.

([DPSOH�
Address Data Comment
0x12345678 0x0100402D load 45 registers starting from register 64 (0x40)
0x1234567C 0x00000000 value for register 64
…
0x12345730 0x04000F0F wait until status is 0x0F, then continue
0x12345734 0x04800000 generate an interrupt
0x12345738 0x80000000 halt

7R�VWDUW�D�'0$,
Write physical address of start of DMA command stream to register 42
Write 0xFF000000 to register 43 to start DMA
An interrupt should be generated when the current DMA command stream is executed

������ 3&,�&RQILJXUDWLRQ�6SDFH�5HJLVWHUV
5HJLVWHU�1XPEHU $GGUHVV�2IIVHW� 5HJLVWHU�QDPH 'HVFULSWLRQ

0 0000h id_reg ID register
1 0004h status_cmd Status command register
2 0008h class_rev Class revision register
3 000Ch cfg0 Configuration 0 register
4 0010h gr_ram_bar Graphics memory base address register
5 0014h ctrl_reg_bar Control register base address register
11 002Ch sub_id Subsystem ID register
12 0030h exp_rom_bar Expansion ROM base address register
15 003Ch cfg1 Configuration 1 register
16 0040h core_clk_cfg Core clock configuration register
17 0044h mem_cfg Memory configuration register
18 0048h video_clk_cfg Video clock configuration register
19 004Ch reg_acc_addr Register access address register
20 0050h reg_acc_data Register access data register
21 0054h feat_reg Feature register

rev. 1.03 08.03.00

��

KFATGI TGIKUVGT�� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

FGXKEGAKF
XGPFQTAKF

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
YHQGRUBLG ���� 0DQXIDFWXUHU�RI�WKH�GHYLFH
GHYLFHBLG ����� 'HYLFH

,'�5HJLVWHU�contains information about the manufacturer and the device
YHQGRUBLG
This field is hardwired to 1292h.
GHYLFHBLG
This field is hardwired to FC04h to identify the device type.

UVCVWUAEOF TGIKUVGT�� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

UVCVWU
EQOOCPF

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FRPPDQG ���� 5HIHU�WR�WKH�3&,�ORFDO�EXV�UHY����
VWDWXV ����� 5HIHU�WR�WKH�3&,�ORFDO�EXV�UHY����

6WDWXV�&RPPDQG�5HJLVWHU bit 1 enables or disables VS25203 on PCI bus:
0 disable
1 enable

6WDWXV�&RPPDQG�5HJLVWHU�bit 2 (bus master control) enables or disables PCI bus master
function:

0 disable
1 enable

ENCUUATGX TGIKUVGT�� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

ENCUUAEQFG
ENCUUAEQFG TGXKUKQPAKF

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FODVVBFRGH ���� *HQHULF�IXQFWLRQ�RI�WKH�GHYLFH
UHYLVLRQBLG ��� 5HYLVLRQ

rev. 1.03 08.03.00

��

&ODVV�5HYLVLRQ�5HJLVWHU contains two fields:

FODVVBFRGH
Identifies the generic function of the device; VS25203 is hardwired to 03000000h as a
display controller.
UHYLVLRQBLG
Device-specific revision identifier.

EHI� TGIKUVGT�� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

JFTAV[RG
NCVAVKO ECEJGANU

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FDFKHBOV ��� &DFKH�OLQH�VL]H
ODWBWLP ���� /DWHQF\�WLPHU
KGUBW\SH ����� +HDGHU�W\SH

&RQILJXUDWLRQ���5HJLVWHU contains the following fields:
FDFKHBOV
Cache line size. Field specifies the cache line size in 32-bit units
ODWBWLP
Latency timer. The value of the latency timer for this bus master in PCI bus clock units.
KGUBW\SH
Header type. Identifies the layout of bytes 0010h to 003Fh, and also whether or not the
device contains multiple functions. Hardwired to 0.

ITATCOADCT TGIKUVGT�� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

ITATCOADCT
ITATCOADCT

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
JUBUDPBEDU ���� *UDSKLFV�PHPRU\�EDVH�DGGUHVV

*UDSKLFV�0HPRU\�%DVH�$GGUHVV�5HJLVWHU specifies the graphics memory base address
(Aperture 0 and Aperture 1).
See also page 13.

rev. 1.03 08.03.00

��

EVTNATGIADCT TGIKUVGT�� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

EVTNADCT
EVTNADCT

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FWUOBEDU ���� &RQWURO�UHJLVWHU�EDVH�DGGUHVV

&RQWURO�5HJLVWHU�%DVH�$GGUHVV�5HJLVWHU. Specifies the base address of the control
register. See also page 13.

UWDAKF TGIKUVGT��� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

UWDAKF
UWDAXGPAKF

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
VXEBYHQBLG ���� 6XEV\VWHP�YHQGRU�,'
VXEBLG ����� 6XEV\VWHP�,'

6XE�,'�5HJLVWHU contains auxiliary information about the manufacturer and the device.
VXEBYHQBLG
This field is read from external ROM during bootup.

subsystem vendor id LSB = ROM(LAST_ADDR-7)
subsystem vendor id MSB = ROM(LAST_ADDR-6)

VXEBLG
This field is read from external ROM during bootup.

subsystem id LSB = ROM(LAST_ADDR-5)
subsystem id MSB = ROM(LAST_ADDR-4)

GZRATQOADCT TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

TQOADCT

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
URPBEDU ����� ([SDQVLRQ�520�EDVH�DGGUHVV

([SDQVLRQ�520�%DVH�$GGUHVV�5HJLVWHU has the following field:
URPBEDU
Contains base address information for expansion ROM.

rev. 1.03 08.03.00

��

EHI� TGIKUVGT��� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

OCZANCV OKPAIPV
KPVARKP KPVANKPG

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
LQWBOLQH ��� ,QWHUUXSW�OLQH
LQWBSLQ ���� ,QWHUUXSW�SLQ
PLQBJQW ����� 0LQLPXP�JUDQW
PD[BODW ����� 0D[LPXP�ODWHQF\

&RQILJXUDWLRQ���5HJLVWHU contains the following fields:
LQWBOLQH
Interrupt line. Contains interrupt line routing information. This field is typically set by the
PC motherboard BIOS.
LQWBSLQ
Interrupt pin. This field is hardwired to a value 01h to specify that INTA# is the interrupt
pin used.
PLQBJQW
Minimum grant value. Specifies the length of the device’s burst period in 250nsec units.
Hardwired to 2.
PD[BODW
Maximum latency value. Specifies how often the device needs to gain access to the bus in
250nsec units. Hardwired to 0 to indicate that VS25203 does not have hard latency
requirements.

EQTGAENMAEHI TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

PQ
TAEQGH OAEQGH PAEQGH
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP

QR �� QRQ�RYHUODS�PRGH
QBFRHI ��� 1�FRHIILFLHQW�IRU�FRUH�FORFN
PBFRHI ���� 0�FRHIILFLHQW�IRU�FRUH�FORFN
UBFRHI ����� 5�FRHIILFLHQW�IRU�FRUH�FORFN

&RUH�&ORFN�&RQILJXUDWLRQ�5HJLVWHU�

Controls the internal clock buffer non-overlap time for debugging purposes. 0 for shorter
non-overlap, 1 for longer non-overlap. Typical value for non-overlap is 0.

rev. 1.03 08.03.00

��

The core clock frequency can be calculated from the formula:

() 26&FRHIU287
)

FRHIQ
FRHIP

) ×
×+
+=

22

2_

where:
QBFRHI��PBFRHI��UBFRHI� = coefficients
)26&��= quartz crystal or external clock (MHz)

For additional information see page 152.
After boot-up register contains value of 8000BE87h (Fout = 50 MHz).

&DXWLRQ: Unsuitable clock frequency parameters may cause permanent damage to the
device.

OGOAEHI TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

FT UI �Z TGHATCVG FGRVJ YK EJ
OQFGATGI

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
GU �� PPBGUDP
VJ �� PPBVJUDP
�[�� �[�PHPRU\�PRGH
UHIBUDWH ����� UHIUHVK�UDWH
GHSWK ����� PPB�B�B�BGHSWK
ZL �� PPB��B��BZLGWK
FK �� PPB�B��BFKLSV
PRGHBUHJ ���� 6'5$0�PRGH�UHJ��YDOXH�����	�'5$0�SDUDP�

0HPRU\�&RQILJXUDWLRQ�5HJLVWHU descriptions:

PPBGUDP
0 if not using DRAM
1 if using DRAM
The default memory type (both bits 30 and 31 = ’0’) is SDRAM memory.

PPBVJUDP
0 if not using SGRAM
1 if using SGRAM

�×�PHPRU\�PRGH
0 normal memory mode
1 2× memory mode

UHIUHVKBUDWH
000 default memory refresh rate
001 3× rate
010 5× rate

rev. 1.03 08.03.00

��

PPB�B�B�BGHSWK
memory "depth" parameter
00 if one level of memory circuits is used
01 if two levels of memory circuits is used
10 if four levels of memory circuits is used
if DRAM memories are used then only supported memory depth is 1,
this field is used to indicate the size of the memory circuits
00 for 256K×16 DRAM
01 for 1M×16 DRAM and also for 4M×16 DRAM

(the 4M×16 DRAM must be of type which uses same amount of CAS bits as
typical 1M×16DRAM)

PPB��B��BZLGWK
0 if 16 bit wide memory buses are used (SDRAM only parameter)
1 if 32 bit wide memory buses are used

value for this field is 1 for SGRAM boards

PPB�B��BFKLSV
(SDRAM only parameter)
0 if 8 bit wide memory circuits are used
1 if 16 bit wide memory circuits are used

value for this field is 1 for SGRAM boards

PRGHBUHJ
SDRAM (SGRAM) mode register / DRAM timing

The mode_reg is shared between two uses:
1) on DRAM configurations to provide timing parameters for the memory
accesses.
2) for SDRAM configuration to provide the value which is used
in SDRAM mode register configuration.

���'5$0�SDUDPHWHUV

The DRAM timing parameters are derived from the mode_reg bits as follows:
(the names of the timing parameters are intended to correspond
to the timing parameters in typical DRAM datasheets)

All timings are relative to the core clock frequency

PRGHBUHJ��� T_AS
address set up time (address setup before RAS or CAS)
0 = 0 cycles
1 = 1 cycles

PRGHBUHJ��� T_CAS
CAS# pulse width
0 = 1 cycles
1 = 2 cycles

rev. 1.03 08.03.00

��

PRGHBUHJ��� T_CP
CAS precharge time
0 = 1 cycles
1 = 2 cycles

PRGHBUHJ��� T_CSR
CAS to RAS setup time
0 = 0 cycles
1 = 1 cycles

PRGHBUHJ����� T_RAS
RAS# pulse width
00 = 4 cycles
01 = 5 cycles
10 = 6 cycles
11 = 7 cycles

PRGHBUHJ��� T_RCD
RAS to CAS delay
0 = 1 cycles
1 = 2 cycles

PRGHBUHJ����� T_RP
RAS precharge time
00 = 1 cycles
01 = 2 cycles
10 = 3 cycles
11 = 4 cycles

PRGHBUHJ��� T_RSH
RAS hold time
0 = 0 cycles
1 = 1 cycles

���6'5$0�PRGH�UHJLVWHU�YDOXH

The mode_reg parameters are also used to configure the mode register of the external
SDRAM or SGRAM memories. The programming is achieved by generating a pseudo
read operation during the circuit bootup time. The read address is formed from the
mode_reg (15:0) value by multiplying it with 256. This read operation is handled so that
instead of performing the typical activate and read cycles for the memory a mode-register-
set cycle is generated. The mode-register-set is generated so that it replaces the activate
cycle so the read address must be correctly aligned as a SDRAM row (activate) address.

The alignement requirements depend on the other memory parameters given in this
register. See the examples bellow for more information.

On the current generation of SDRAM/SGRAM circuits the correct value for the mode
register is: 030h which corresponds to

burst length "000" = burst length 1
burst type "0" = sequential
cas latency "011" = 3 cycle latency

rev. 1.03 08.03.00

��

&RQILJXUDWLRQ�H[DPSOHV�

PHPBFIJ� GHVFULSWLRQ
00030180h SDRAM memory 4×16 bit memories (8 Mbytes)

mode_reg = 0180h
mm_8_16_chips = 1
mm_16_32_width = 1
mm_1_2_4_depth = 00

000100C0h SDRAM memory 2×16 bit memories (4 Mbytes)
mode_reg = 0C0h
mm_8_16_chips = 1
mm_16_32_width = 0
mm_1_2_4_depth = 00

40030180h 2×(256K×32) SGRAM

40070300h 2×2×(256K×32) SGRAM

800001C0h 4×256K×16bit DRAM
mode_reg = 01C0h
T_AS 0 (0 cycles)
T_CAS 0 (1 cycles)
T_CP 0 (0 cycles)
T_CSR 0 (0 cycles)
T_RAS 0 (4 cycles)
T_RCD 1 (2 cycles)
T_RP 11 (4 cycles)
T_RSH 0 (0 cycles)

XKFGQAENMAEHI TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

TAEQGH OAEQGH PAEQGH
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
QBFRHI ��� 1�FRHIILFLHQW�IRU�FRUH�FORFN
PBFRHI ���� 0�FRHIILFLHQW�IRU�FRUH�FORFN
UBFRHI ����� 5�FRHIILFLHQW�IRU�FRUH�FORFN

9LGHR�&ORFN�&RQILJXUDWLRQ�5HJLVWHU. The video clock frequency can be calculated from
the formula:

() 26&FRHIU287
)

FRHIQ
FRHIP

) ×
×+
+=

22

2_

where:
QBFRHI��PBFRHI��UBFRHI� = coefficients
)26&��= quartz crystal or external clock (MHz)

For additional information see page 152.

rev. 1.03 08.03.00

��

After boot-up register contains value of 0000E087h (Fout = 25 MHz).

&DXWLRQ: Unsuitable clock frequency parameters may cause permanent damage to the
device.

TGIACEEACFFT TGIKUVGT��� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

TGIACEEACFFT
TGIACEEACFFT

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
UHJBDFFBDGGU ���� UHJLVWHU�DFFHVV�DGGUHVV

5HJLVWHU�$FFHVV�$GGUHVV�5HJLVWHU contains the address for internal register access.

TGIACEEAFCVC TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

TGIACEEAFCVC
TGIACEEAFCVC

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
UHJBDFFBGDWD ���� UHJLVWHU�DFFHVV�GDWD

5HJLVWHU� $FFHVV� 'DWD� 5HJLVWHU provides an alternative method for accessing the
VS25203 internal registers in situations where normal memory mapped register access is
not available. Obviously this method is very slow. In order to use the access registers the
target register address is written to the address register (19), and the value is written to the
data register (20). The actual register write happens when the most significant byte of the
access data register is written. This can be done with an 8, 16 or 32-bit configuration
register write.

rev. 1.03 08.03.00

��

HGCVATGI TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

FFX GWKQ
HHG HHO HHV XGG XTUN XTU XFG
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
GGY �� GLVDEOH�GLJLWDO�YLGHR
HXLR �� HQDEOH�XVHU�,�2�>���@
IIH �� IOLFNHU�ILOWHU�HQDEOH
IIP �� IOLFNHU�ILOWHU�PRGH
IIW ���� IOLFNHU�ILOWHU�WKUHVK
YHH � 9*$�H[WHQVLRQ�HQDEOH
YUVO � 9*$�UHIUHVK�VHOHFW�ORFN
YUV � 9*$�UHIUHVK�VHOHFW
YGH � 9*$�GHFRGH�HQDEOH

GGY
Disable digital video should be set to "1" when the digital RGB-port is used for other
purposes, for example video capture or flash memory programming.
HXLR
Enable user I/O [5:6], extra enable signal required for user I/O(6) and user I/O(5) signals.
IIH
Flicker filter enable, a bit for activating the flicker filter and interlace module.
IIP
Flicker filter mode, affects the mode of operation for the flicker filter.
0 default value, optimal in most cases.
1 modified algorithm, which might provide better results on 100/120 Hz televisions.
IIW
Flicker filter threshold, threshold value for flicker filtering 0 means no threshold (filter
always), 16 means no filtering (perform interlace conversion still).
YHH
VGA extension enable, enables using of extended VGA registers.
0 only standard VGA registers available.
1 extension registers are also available.
value after reset 0 (extension registers not visible).
YUVO
VGA refresh select lock, refresh register selection lock.
0 automatic selection of refresh registers active.
1 current selection locked.
value after reset 0 (not locked).
YUV
VGA refresh, selects 3D/VGA video refresh control.
0 3D video refresh registers used.
1 VGA refresh registers used.
value after reset 1 (VGA enabled) This bit changes its state automatically if VGA or 3D
refresh registers are accesses, unless the select lock is active.
YGH
VGA decode enable, activates the decoding of the standard VGA memory and IO ranges.
value after reset 1 (VGA enabled).

rev. 1.03 08.03.00

��

������ ,QWHUUXSWV
VS25203 provides the following interrupt facilities:

9LGHR�VFDQOLQH�
If video interrupt is allowed, video scanline IRQ is enabled when vq field of the
ref_reg�register 49 is one. vi field of the status�register 48 is one when interrupt is
active. IRQ is triggered when the value of the video_y_coord field of the status
register reaches current video refresh scanline, (video_y_ref field of the ref_reg
register). The interrupt can be reset by writing value "1" into the vi field of the status
register.

3&,�PDVWHU�
When PCI master causes an interrupt, mi field of the status� register is one. The
interrupt can be reset by writing value "1" into that same mi field of the status register.
See additional information about the interrupt line and interrupt pin specified on page 28.

)LHOG�FDSWXUH�
When field capture causes an interrupt, capi field of the status� register is one. The
interrupt can be reset by writing value "1" into that same capi field of the status
register. For additional information see Video Capture base configuration register
(capt_base_conf register 31).

9*$�LQWHUUXSW�
Refer to the chapter VGA Interrupt Generation on page 160.

*HRPHWU\�3URFHVVRU�LQWHUUXSW�
the vi field of the status�register 48 is one when interrupt is active. The interrupt can
be reset by writing value "1" into the vi field of the status�register. The interrupt is set
by status_reg_in register 194. For additional information see register 194.

rev. 1.03 08.03.00

��

���� 6\VWHP�&RQWURO�5HJLVWHUV

������ 2YHUYLHZ
The system control registers contain registers which are used to control the PCI master
functionality. Also some system debugging and state analysis registers are placed into this
category.

PCI master control registers were originally placed at the PCI configuration space. But the
present placement offers a more portable high performance interface for accessing them.
This register set also contains extra I/O registers (page 41) which can be used to control
the general purpose I/O pins of VS25203 (user_io[6:0] pins B9, C10, C12, B12, A12, C13
and B13, see page 234). These pins are used in a system dependent way.

With registers 54 and 55 it is possible to prepare some transformations between apertures,
see page 44.

������ 5HJLVWHUV
Register Number Address Offset Register name Description

42 00A8h ma_cmd_addr PCI master command address register
43 00ACh master_state PCI master state register
44 00B0h ma_int_addr PCI master internal address register
45 00B4h ma_ext_addr PCI master external address register
46 00B8h reserved -
47 00BCh reserved -
48 00C0h status Status register
49 00C4h ref_reg Video reference register
50 00C8h debug_reg Debug register
51 00CCh io_reg I/O register
52 00D0h ext_io_reg Extra I/O register
53 00D4h ext_io_reg2 Extra I/O register2
54 00D8h mem_apt0_cfg Memory aperture-0 configuration register
55 00DCh mem_apt1_cfg Memory aperture-1 configuration register

rev. 1.03 08.03.00

��

PDBFPGBDGGU UHJLVWHU��� RIIVHW���$�K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PDBFPGBDGGU

PDBFPGBDGGU

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

ma_cmd_addr 31:0 PCI master command address

3&,�0DVWHU�&RPPDQG�$GGUHVV�5HJLVWHU. This register contains the start/current address
of the master stream. User writes the start address of the stream to this register before
starting the bus mastering operation. Note that this address is a physical address.

PDVWHUBVWDWH UHJLVWHU��� RIIVHW���$&K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PDVWHUBVW PDVWHUBFQW

PDVWHUBFQW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

master_cnt 23:0 PCI master counter
master_st 31:24 PCI master state

3&,�0DVWHU� 6WDWH�5HJLVWHU. This register, when read, provides debugging information
about the current state of the PCI master unit.
PDVWHUBVW
Master state. Non-zero value in master_st starts the PCI master and zero in master_st halts
the PCI master. Note that bit 2 (master enable) in the status_cmd register (a PCI
configuration space register) has to be set to one to enable the master function.
PDVWHUBFQW
master_cnt is read-only, and is used only for driver debugging.
Refer to status_cmd (1) register on page 25.

rev. 1.03 08.03.00

��

PDBLQWBDGGU UHJLVWHU��� RIIVHW���%�K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PDBLQWBDGGU

PDBLQWBDGGU

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

ma_int_addr 31:0 PCI master internal address

3&,� 0DVWHU� ,QWHUQDO� $GGUHVV� 5HJLVWHU. This read-only register contains the source
address during the bus master stream read command (opcode 03h); for example,
(gr_ram_bar + offset). Note that ma_int_addr (read-only) is used only for driver
debugging.

PDBH[WBDGGU UHJLVWHU��� RIIVHW���%�K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PDBH[WBDGGU

PDBH[WBDGGU

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

ma_ext_addr 31:0 PCI master external address

This read-only register contains the destination address for the bus master stream read
command (opcode 03h); for example, (gr_ram_bar + offset). Note that ma_ext_addr
(read-only) is used only for driver debugging.

rev. 1.03 08.03.00

��

VWDWXV UHJLVWHU��� RIIVHW���&�K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

YLGHRB\BFRRUG

PL SY YL FDSL JSL JSI JS� EOWL YF LG� LG� RN� RN�

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

video_y_coord 26:16 Video y coordinate
mi 15 PCI master interrupt active
pv 14 Pixel visible
vi 13 PCI video interrupt active
capi 12 Video Capture interrupt active
gpi 11 Geometry Processor interrupt active
gpf 7 Geometry Processor flag
gp0 6 Geometry Processor stream0 flag
blti 5 Block Transfer Unit idle
vc 4 video compare
id1 3 Primitive processor idle
id2 2 Pixel processor idle
ok1 1 Primitive processor init ok
ok2 0 Pixel processor init ok

YLGHRB\BFRRUG
Video y coordinate. Current video refresh scanline.
PL
PCI master interrupt active. This bit is set to "1" when VS25203 has interrupt request
active when interrupt is activated by the PCI master block. The interrupt is active until the
device driver resets the interrupt. PCI bus master interrupt is reset by writing a value "1"
into this field.
SY
Pixel visible. This bit is set to one when a visible pixel has been detected by the Pixel
Processor in the zread operation. The bit is reset by writing a value "1" into this field.
Refer to the grid_reg (102) register.
YL
PCI video interrupt active. This bit is one when the device has an active IRQ. This
interrupt is caused by the video_y_ref field of ref_reg (49) register through the
video-y comparator. The interrupt is active until the device driver resets the interrupt.
Video interrupt is reset by writing a value "1" into this field.
&DSL
Video Capture interrupt active. This bit is set to one when the circuit has interrupt request
active if the interrupt has originated from the Video Capture unit. The interrupt is active
until the device driver resets the interrupt. The video interrupt is reset by writing the value
"1" into this register bit.
JSL
PCI Geometry Processor interrupt active. This bit is one when the device has an active
IRQ. Video interrupt can be reset by writing a value "1" into this field. See also
Status_reg_in, register 194.

rev. 1.03 08.03.00

��

JSI
Geometry Processor flag.
JS�
Geometry Processor stream 0 flag.
EOWL
Block Transfer Unit idle. Indicates status of the Block Transfer Unit.
1 idle
0 busy
YF
This bit is one when the video_y_coord field value is equal or greater than the
video_y_ref value of the ref_reg , register 49�
LG�
Primitive Processor idle. This bit is one when the Primitive Processor is in the idle state.
LG�
Pixel Processor idle. This bit is one when the Pixel Processor is in the idle state.
RN�
Primitive Processor initialization ok. This bit is one if initial values are allowed to be
written to the Primitive Processor.
RN�
Pixel Processor initialization ok. It is used for finding out when the Pixel Processor can be
initialized. In VS25203, it is given by id1 and id2.

UHIBUHJ UHJLVWHU��� RIIVHW���&�K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

YJDT YT YLGHRB\BUHI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

vgaq 12 VGA IRQ ena

vq 11 Video IRQ
video_y_ref 10:0 Video y reference

YJDT
If this bit is set then the VGA unit generated interrupt is routed to the PCI bus. An
interrupt which is initiated by the the VGA block must be reset using the VGA unit.
YT
Video IRQ. When this bit is set to one the device will generate an interrupt request (IRQ)
when the video_y_coord field value of the status register (49) is equal or greater
than the video_y_ref�value.
YLGHRB\BUHI
Video y reference scanline.

rev. 1.03 08.03.00

��

GHEXJBUHJ UHJLVWHU��� RIIVHW���&�K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

GHEXJBUHJ

GHEXJBUHJ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

debug_reg 31:0 System debug register

 Hardwired to zero.

LRBUHJ UHJLVWHU��� RIIVHW���&&K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XVHUBLRBRXW>���@ XVHUBLRBLQ>���@

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

user_io_out[6:0] 14:8 User I/O register (read-only)
user_io_in[6:0] 6:0 User I/O register (read/write)

XVHUBLRBRXW>���@
Seven general purpose user_io pins of the VS25203, where the value is driven out from
the pins. The actual direction of the pins (input/output) depends on the user I/O enable bits
in extra_io_reg (52) register. See also miscellaneous signals on page 234.
XVHUBLRBLQ>���@
The value read from the user_io pins.

H[WBLRBUHJ UHJLVWHU��� RIIVHW���'�K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WP HLH XVUBLRBHQD H[WUDBRXWBGDWD

H[WUDBRXWBGDWD H[WUDBLQBGDWD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

tm 31 Test mode
eie 30 Extra I/O enable
usr_io_ena 28:24 User I/O enable[4:0]
extra_out_data 23:8 Extra out data value
extra_in_data 7:0 Extra in data value

rev. 1.03 08.03.00

��

H[WUDBLQBGDWD
Blue color bus B[7:0] of the DAC or BIOS data.
H[WUDBRXWBGDWD
Red and green color buses R[7:0], G[7:0] of the DAC or high and low BIOS addresses.
It gives the value driven on the RG pins (digital video), if extra I/O enable is active. See
also external DAC signals on page 233, chapter Signal Descriptions.
XVUBLRBHQD
Controls the direction of the user I/O pins [4:0].
0=not driven-input
1=driven-output
each pin has a separate control bit.
HLH
Extra I/O enable. Controls the driving of the extra_out_data field to the Red/Green
DAC signal lines; if eie=0, the value is not driven.
WP
Reserved for test purposes. Should be zero.
&DXWLRQ��Be careful when setting bits 28:24; as they define the direction of io_reg (51)
register.

H[WBLRBUHJ� UHJLVWHU��� RIIVHW���'�K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

HGEH

XVUBLRBH� H[WUDBRXWBGDWDBE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

edbe 31 Extra out data_b_ena
usr_io_e2 9:8 User I/O enable[6:5]
extra_out_data_b 7:0 Extra out data value for B

HGEH
Enable signal for extra data out value
XVUBLRBH�
Controls the direction of the user I/O pins [6:5].
0 not driven-input
1 driven-output; each pin has a separate control bit.

H[WUDBRXWBGDWDBE
Data out value of B component

rev. 1.03 08.03.00

��

PHPBDSW�BFIJ UHJLVWHU��� RIIVHW���'�K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UO� P� ZV� EV� DSW�BZLGWK DSW�BKHLJKW

DSW�BDGGU

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

rl0 31 Aperture 0 raw / linear mode access

m0 30 Aperture 0 16/32 bit mode

ws0 29 Aperture 0 word swap

bs0 28 Aperture 0 byte swap

apt0_width 26:24 Aperture 0 width
apt0_height 21:16 Aperture 0 height
apt0_addr 13:0 Aperture 0 start address

DSW�BZLGWK
Aperture 0 width. Used in splitting the X and Y coordinates from the memory address in
linear mode. The value is the number of bits in X coordinate. Values are translated as
presented in the table above.

9DOXH 7H[WXUH�VFUHHQ�ZLGWK
�SL[HOV�

 0 32
 1 64
 2 128
 3 256
 4 512
 5 1024
 6 2048
 7 Reserved

DSW�BKHLJKW
Aperture 0 height in 32 pixel boxes
DSW�BDGGU
Aperture 0 start address in 2048 byte blocks
ZV�
Aperture 0 word swap. If this bit is one then the memory accesses will have the 16-bit
words swapped, thus e.g. byte ordering 3210 becomes 1032.
EV�
Aperture 0 byte swap. If this bit is one then the memory accesses will have the byte
ordering swapped, thus byte ordering 3210 becomes 0123. This can be used in
combination with ws to produce the ordering 2301 from 3210.
P�
Aperture 0 16/32 bit mode
0 16-bit mode (or packed YUV)
1 32-bit mode (ARGB or YUV-24+α mode)
UO�
Aperture 0 raw/linear mode:
0 the aperture is in raw mode
1 the aperture is in linear frame buffer mode

rev. 1.03 08.03.00

��

m0, apt0_width and apt0_height are used only when the aperture is in the linear frame
buffer mode.

PHPBDSW�BFIJ UHJLVWHU��� RIIVHW���'&K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UO� P� ZV� EV� DSW�BZLGWK DSW�BKHLJKW

DSW�BDGGU

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

rl1 31 Aperture 1 raw / linear mode access

m1 30 Aperture 1 16/32 bit mode

ws1 29 Aperture 1 word swap

bs1 28 Aperture 1 byte swap

apt1_width 26:24 Aperture 1 width
apt1_height 21:16 Aperture 1 height
apt1_addr 13:0 Aperture 1 start address

See mem_apt0_cfg register (register 54).

���� *UDSKLFV�0HPRU\�7\SH
The preferred memory type for VS25203 is 1M × 16 Synchronous DRAM (SDRAM).
Full VS25203 performance can be achieved by connecting VS25203 with four 16-bit
wide SDRAM devices. A version with lower performance can be created by using only
two 16-bit wide SDRAMs. The performance drop is mostly significant when high
resolution and/or true-color modes are used.

It is also possible to use 32-bit wide Synchronous Graphics DRAMs (SGRAM) with
VS25203. SGRAM prices are higher than SDRAM prices for the same memory size, but
because of their different configuration a graphics system with a smaller total memory can
be created by using SGRAMs. Too small a memory will obviously limit the texture
capabilities of VS25203.

For lower performance systems VS25203 can also be combined with EDO DRAMs.

Note that for SDRAM and SGRAM, burst access (meaning the transfer of multiple data
phases per a single address phase which requires programming the SDRAM/SGRAM
mode register with the burst length) is not used in VS25203. In other words, the burst
length is only 1. Instead, VS25203 uses pipelined accesses to the current page which has
no performance differences with SDRAM/SGRAM burst accesss. Typically on larger
triangles the frame and Z buffer accesses use up to 32 consecutive cycles. For textures, the
average consecutive access count to a single page is lower.

rev. 1.03 08.03.00

��

The following SDRAM commands are used by VS25203:
mode register write
precharge
activate
read/write
refresh

VS25203 treats SGRAM accesses similarly and does not currently use any of the SGRAM
special features.

rev. 1.03 08.03.00

��

��� *HRPHWU\�3URFHVVRU

���� *HQHUDO�,QIRUPDWLRQ

The Geometry Processor is based on 3-issue VLIW architecture with a packed 32-bit
instruction word. It has three Arithmetic Units (AU) and additional units for hardware
division, logic operations and other tasks. The AUs have three-cycle pipelines with
multiplication as the first stage, addition as the second and shifting as the final stage. The
addition is also used as the second stage of the multiplication, so both cannot be started on
the same cycle. The processor also has three integrated data memories, so there is no need
to use the external graphics memory during calculations.

The Geometry Processor interfaces to the other blocks of the VS25203B by having nearly
full access to the registers of the chip. These registers can be written from the A-register
of the AU2. Normally the task of the Geometry Processor is to process a data stream and
calculate values to the Primitive Processor and Pixel Processor registers. The stream is
read from the external graphics memory to the stream buffer, from where it can be loaded
to the AU registers one 64-bit word at a time.

&21752/

'$7$3$7+675($0�,�2 5(*,67(5�287

,1675�
&$&+(

)LJXUH�������*HRPHWU\�3URFHVVRU��WRS�OHYHO�DUFKLWHFWXUH�

Figure 4.1-1 shows the top-level architecture of the Geometry Processor. The processor is
optimized for 3D scene processing. Input data comes as a stream and the final result is a
set of initialization values for the other units in the VS25203B. The Stream I/O Unit
provides the input data for the Geometry Processor. The data can come from either
through the PCI interface (direct stream data) or from the external graphics memory
through the Memory Manager. The Stream I/O can also be used to write data to the
external memory. The Datapath, described in chapter 4.2, does the actual work controlled
by the Control block that fetches and decodes the 32-bit instruction words. The Register
Out block provides the interface for the other units in the VS25203B chip.

The program that controls the Geometry Processor is given by the user and is stored in the
external graphics memory. The address space for the program memory is 16384 words,
and the location in the external graphics memory is given by the user in the CODEBASE
register (see code_config, register 193 and the page 99). The program is cached into a
4-way set-associative on-chip instruction cache with a 128 word block size. The program
can also initiate prefetching of the cache blocks.

As is usual for a VLIW processor, the architecture and pipeline in the Geometry Processor
are visible to the programmer, and he or she must take into account all the pipeline
effects. This enables one to write maximally efficient code, but requires more care in
programming. To make sure the instruction cache is used efficiently it is important to
organize the code properly.

rev. 1.03 08.03.00

��

������ *HRPHWU\�3URFHVVRU�%XV�6WUXFWXUH

The Geometry Processor has one 32-bit wide global data bus called the *HQHUDO�EXV. This
bus is used to transfer data between the Control block, Stream I/O and the Datapath. In
addition to the General bus, the Stream I/O Unit transfers data read from the stream using
the 6WUHDP�EXV, which is a combination of three 32-bit buses, one for each of the
Arithmetic Units. By using this bus it is possible to read up to three values from the
stream in one instruction.

Internal to the Datapath, the Arithmetic Units are connected to the local data memories
using WZR�EXVHV�SHU�$8. This enables transfer of up to six data values in one instruction.
2QH of the buses is used to write data from the AU’s A-register to any of the memories
and read data from the associated memory to the Y-register. The VHFRQG�EXV is used to
read data from any of the data memories to the X-register of the AU. I.e. for each of the
AUs, during one instruction execution, it is possible to read one value to the X-register
and either read one value to the Y-register or write one value from the A-register.

In addition to these Geometry Processor local buses there are three other buses involved
in the operation of the Geometry Processor. The ([WHUQDO�6WUHDP�,QWHUIDFH�EXV has a
64-bit interface to the external graphics memory or to the PCI bus. The 5HJLVWHU�2XW�EXV
offers a 32-bit-wide path for writing data to the registers of the other blocks on the
VS25203B chip. Finally the program for the Geometry Processor is read through the
3URJUDP�0HPRU\�EXV which has a 64 bit-wide path from the external graphics memory
to the instruction cache of the Geometry Processor.

���� 'DWDSDWK�$UFKLWHFWXUH

The Datapath of the Geometry Processor, illustrated in the Figure 4.2-1, does all the
calculations needed for executing the users programs. It consists of three parallel 32-bit
fixed point Arithmetic Units, a 32-bit wide Logic Unit, a Normalization Unit, and a 32/24-
bit Hardware Division Unit. The results of the three AUs can be combined together using
a 3-element vector adder. The Logic, Normalization, and Hardware Division Units are
closely connected to the Arithmetic Unit 2. They receive input from the X and Y-registers
of the AU2 (X2 and Y2), and the result of the Logic unit is written to its A-register (A2).

The A-register of the Arithmetic Unit 2 has some special functionality over the A-
registers of the other AUs. It is used as a source for the register out instructions (OUT) to
write data to the registers in the other units of the VS25203B. The A2 register is the only
one of the A-registers to receive data from the vector adder and the Logic Unit. The
instruction encoding additionally restricts the A2 register to be the only one receiving
values from the divide output registers (quotient and remainder), the STATUS register
(see chapter 4.5.6 on page 63), the N register (Result of Normalize instruction), and the
JMPREG.

rev. 1.03 08.03.00

��

$8�$8�

$

; <

5$0�5$0�

$8�$8�

$

; <

5$0�5$0�

+:�',9

$8�$8�

$

; <

5$0�5$0�

12501250

/2*,&/2*,&

6WUHDP�EXV

*HQHUDO�EXV

)LJXUH�������%ORFN�GLDJUDP�RI�WKH�'DWDSDWK�

������ $ULWKPHWLF�8QLW

Each of the three Arithmetic Units has a 32-bit fixed point datapath with 24x24 => 48-bit
multiplier shown in Figure 4.2-2. The Arithmetic Unit has two input registers: the X-
register and the Y-register. The X-register can be loaded with values from any of the local
data memory banks, the Stream I/O Unit, any of the A-registers of the AUs, and
immediate values from the instructions. The Y-registers may be loaded with values from
the corresponding local data memories only, i.e. Y0 may be loaded from RAM0 only. The
Arithmetic Unit can also use the values from the result register A as operands for its
instructions. This reduces the impact of the reduced functionality of the Y-registers and
makes it possible to effectively perform chained calculations.

rev. 1.03 08.03.00

��

$GGHU�
0XOWLSOLHU

6WDJH��

$GGHU�
0XOWLSOLHU

6WDJH��

;�UHJ;�UHJ <�UHJ<�UHJ

0�UHJ0�UHJ

6KLIWHU6KLIWHU

9HFWRU
$GGHU
9HFWRU
$GGHU

$�UHJ$�UHJ

08;08;

;�EXV <�EXV

$�EXV

0XOWLSOLHU
6WDJH��

0XOWLSOLHU
6WDJH��

5�UHJ5�UHJ

)LJXUH�������%ORFN�GLDJUDP�RI�WKH�$ULWKPHWLF�8QLW�

The multiplier result register R is accessed only through Arithmetic instructions. It
receives values through the Multiplier block which performs the first stage of the
multiplications. The Multiplier block produces two intermediate values to be processed in
the Adder block to produce the final multiplication results. See Figure 4.2-2.

The Multiplier block is also used to format the operands for the other functions performed
by the Adder block. Results of the Adder block are normally stored into the M-register for
processing by the Shifter block. The A-register finally receives the AU results from the
Shifter unit after a latency of three instruction cycles.

For simple operations it is possible to bypass some of the intermediate registers to reduce
latency. If multiplication is not used, then the R-register may be bypassed and the values
of the X and Y/A-registers are used directly as operands for the instruction. Also if
shifting or vector addition of the results is not necessary, the results from the Adder can be
directly written to the A-register bypassing the M-register. This makes it possible to
perform for example addition of X and Y-register values directly to the A-register in one
clock cycle.

rev. 1.03 08.03.00

��

The AUs support the following instructions:
ADD Addition
SUB Subtraction
MUL Multiplication
SHIFT Shift M-register by up to +- 32 bits
SHIFTN Shift M-register by the value of the N register
NEG Negation of one value
PASS Passing through of input values
ZERO Result is zero
INC Increment A-register value
DEC Decrement A-register value
ABS Absolute value of an AU register
NEG_ABS Negation if the absolute value of an AU register
ADD_ABS Add the absolute value of the X-register to A-register
SUB_ABS Subtract the absolute value of the X-register from A-register
SAT Saturate value of the A-register to 8-bit signed range
SATU Saturate value of the A-register to 8-bit unsigned range

In addition of these AU2 also supports the vector adder instructions, which allows
addition of any of the shifted values of the M-registers in the AUs. One or two of the M-
register values can also optionally be negated. This allows the programmer to perform
pipelined 3-element vector dot-products in a single cycle.

The Datapath supports two different numeric formats. Both of the Datapath numeric
formats use 2’s complement numeric representation. The first format is a normal 32-bit
wide integer format. The second is a 32-bit wide fixed-point format where the binary
point is between the sign bit and the mantissa. The values that can be represented by these
formats are summarized in the table below:

Integer Fixed point
Minimum value -231 -1
Maximum value 231 - 1 1-2-31

Smallest difference 1 2-31

Since the inputs of the Multiplier blocks are only 24-bit wide, they cannot use the whole
32-bit data range supported by the Datapath. The multiplication of two integer type
operands of 24 bits results in a 47-bit wide result when using 2’s complement
representation. However the final result of the multiplications should fit to a 32-bit wide
register.

For integer data, if the operands are too big, the result can overflow the data range. For the
fixed point case, the result can never overflow, but if the values are too small the result of
the multiplication can underflow. To support use of these two formats in multiplications,
the Multiplier block can multiply either the lower 24 bits of the operands (integer format)
or the upper 24 bits (fixed point format). In the case of integer format multiplication, the
32 lower bits of the result contain the desired multiplication result. For the fixed point
case, the upper 32 bits contain the result. The instruction set supports direct loading of
upper or lower 32 bits of the result to the A-registers. For better control of the data ranges,
it is possible to use the Shifter through the M-register.

rev. 1.03 08.03.00

��

������ /RJLF�8QLW

The Logic Unit is used to perform normal logical operations between its operands (X2 and
Y2), but it can also be used to perform bit-field operations. The result of the Logic
operation is loaded to register A2. The Logic Unit instruction bits drive the circuitry
directly, so it is possible to use the unit very creatively. The schematic representation of
the Logic Unit is shown in the Figure 4.2-3. The shift and mask values are used to
form a bitmask containing mask bits shifted left by the value of shift.

;� <�

0$6.

6+,)7�83

,19(57

08;

08;

08;

08;

6+,)7
'2:1

$�

=(52

XSEL

YSEL

XOR

INV

DSHIFT

MASK

SHIFT

0 1 2 3

0 1 2 3
2

2 bits wide

5

1

5 bits wide

1

0

0

)LJXUH�������%ORFN�GLDJUDP�RI�WKH�/RJLF�8QLW�

rev. 1.03 08.03.00

��

With the Logic Unit it is possible to produce for example the following operations:

AND Logical AND between X2 and Y2
NAND Logical NOT of AND between X2 and Y2
OR Logical OR between X2 and Y2
NOR Logical NOT of OR between X2 and Y2
XOR Logical Exclusive OR between X2 and Y2
XNOR Logical NOT of Exclusive OR between X2 and Y2
NOT Logical NOT of X2 or Y2
PASS Pass X2 or Y2 directly to output
EXTRACT Extract bit-field from X2 or Y2
BIT_TEST 1-bit version version of the above
COPYBIT Copy bit-field from Y2 to value of X2
SETBIT Set bit-field of value of X2 to ones
CLRBIT Clear bit-field of value of X2 to zeros
NEXTRACT Extract bit-field from logically negated value of X2
MASK_AND Logical AND of bit-field of ones and value of X2 or Y2

The Logic operations also affect to the STATUS register bit 3 (see the page 63). It is
updated with the LSB (bit 0) of the Logic Unit operation’s result value. All the Logic
instructions affect to the STATUS register bit. For example, it is possible to test whether
X2 or Y2 is even or odd using the PASS Logic operation.

������ 1RUPDOL]DWLRQ�8QLW

The Normalization Unit has two functions. It has an N register which is used in AU
operations as the operand for the SHIFT instructions. The N register can be loaded from
any of the A-registers, directly via the Immediate Load instructions or executing the
Normalize instruction. The Normalize instruction is also mentioned on page 92.

The Normalize instruction calculates the shift value needed to normalize its operand. A
number is said to be normalized when its two most significant bits are different.
For fixed point numbers this means that a normalized number is in the range [-1 ; -0.5) or
[0.5 ; 1). The Normalize instruction receives its input from the X2 register, and the output
goes to the N register. Normalization is useful in implementing block-floating-point-
operations and it can also be used to quickly estimate the base 2 logarithm of the absolute
value of the operand.

������ +DUGZDUH�'LYLVLRQ�8QLW

The Hardware Division Unit implements iterative division of 24- and 32-bit numbers. The
division operation needs either 12 or 16 clock cycles, respectively, to complete depending
on the operand format. The dividend can be either positive or negative, but the divisor
must always be positive.

The Hardware Division Unit operates in parallel with the other units in the Geometry
Processor, so that the program needs not to stop to wait for the division to complete.
There is no hardware locking to prevent trying to extract the division results too early. If
this happens, the program just receives incorrect results.

rev. 1.03 08.03.00

��

There is also no protection against starting a second division too soon after the first. After
the required clock cycles the division unit freezes the result so it may be extracted at any
time after the Division operation is finished, however it should be extracted before a new
one is started. I.e. pipelining of divisons is not supported.

08; 08;

�'G�06%�
5HPDLQGHU

'LYLGHQG�
4XRWLHQW

'LYLGHU
��&RUH

08;

Result
 to A2

Y2 X2

'LYLGHU

)LJXUH�������%ORFN�GLDJUDP�RI�+DUGZDUH�'LYLVLRQ�8QLW�

The division unit shown in Figure 4.2-4, uses a non-restoring radix-4 iterative algorithm
for the divisions, and both the quotient and the remainder from the operations are
available for the programmer. The remainder is, however, not usable directly. The
programmer must perform the restoration step to get the real value of the remainder. The
restoration algorithm is described in more detail on the page 94.

������ 'DWD�0HPRU\

The Datapath has local data memory for storing intermediate values required by the user’s
programs. There are three banks of 128 words each. The data word is 32 bits wide. The
memories are dual ported so that it is possible to either read two values in one cycle or
read one value and write one value. The two ports of the memories are connected in the
following way:

port 1 read-only read to X-registers
port 2 read-write read to Y-registers write from A-registers

The dual port structure of the memories gives raise to a hazard in the memory operation.
If the user’s program tries to write to a memory location which is also being read at the
same time, the results of the read are unspecified. In addition, the particular memory
location in question will contain unspecified value after the operation. However, besides
of yielding unspecified results the memories cannot be physically harmed by this. For
getting better performance the hazard is left for the programmer to resolve, instead of
being handled in hardware.

rev. 1.03 08.03.00

��

���� ,QVWUXFWLRQ�([HFXWLRQ

The Geometry Processor instructions are formed of several fields, and the total width of
the instructions is 32 bits. All instructions have the same width, and execute in one clock
cycle. Some operations, e.g. Divide, can take more than one clock cycle to complete, but
other instructions can be executed in parallel.

The pipeline of the Geometry Processor is visible to the programmer. This means that the
programmer should take care of the pipeline by himself / herself. The visible pipeline
enables one to write maximally efficient code but causes some overhead in the
programming work. The maximum address space for program memory is 14 bits. The on-
chip memory is 512 words divided into 4 banks that are cached from the external
memory. The location of the Geometry Processor program memory in the external
graphics memory is configured through the CODEBASE register. Writing to the
CODEBASE register from the Geometry Processor allows one to have more than one
logical address space within the external memory. This can be used to extend the effective
program memory address space beyond 14 bits (16384 words). There is no cache flush
instruction, so the programmer should take care of the cache effects. See also the page 99�

The Geometry Processor uses a classic 3-stage pipeline consisting of fetch, decode, and
execute stages. The normal execution of instructions is shown in the table below:

,QVWUXFWLRQ
Instr1 Fetch Decode Execute
Instr2 Fetch Decode Execute
Instr3 Fetch Decode Execute

Time

([HFXWLRQ�6WDJH

Control transfers are implemented as delayed branches with one delay slot. This means
that the instruction following the branch instruction is executed always, not depending on
whether the jump is actually taken or not. No data moves are delayed, which means that
data transferred by one instruction will be available for use during the next instruction.
The normal BRANCH execution is shown in the table below:

,QVWUXFWLRQ
Taken Branch Fetch Decode Execute
Branch+1 Fetch Decode Execute
Target Fetch Decode Execute
Target+1 Fetch Decode Execute
Target+2 Fetch Decode Execute

Time

([HFXWLRQ�6WDJH

There are two major branch categories: jumps and subroutine calls. It is possible to use
either unconditional or conditional branches. Conditional branches use the STATUS
register, described on the page 63, to evaluate the branch conditions. The STATUS
register contains the sign bits of all the A-registers in the Arithmetic Units, and the
BIT_TEST flag from the Logic Unit. Also the branches can be direct or indirect, in which
case the branch address is taken from the JMPREG register described on the page 62. The
block diagram of the program address calculation unit is shown in Figure 4.3-1.

rev. 1.03 08.03.00

��

08;

-035(* 3&

,1&

08;

Program
Address

General
bus

Branch
Address

)LJXUH�������%ORFN�GLDJUDP�RI�3URJUDP�&RXQWHU��PC��

The decision for the branch must be done in the decode stage of the branch instructions to
be able to fetch the next instruction after the delay slot instruction. Since the branch
condition which is derived from the flags is not ready until the execution stage of the
branch instruction we cannot be sure whether the branch will be taken or not.

The Geometry Processor uses speculation based on the previous value of the flags to
make an early decision of the address of the next instruction. If the prediction was
incorrect it is corrected during the next instruction cycle by canceling the decoding and
execution of the incorrectly fetched instruction. The execution of a canceled branch is
shown in the table below:

,QVWUXFWLRQ
Taken Branch Fetch Decode Execute
Branch+1 Fetch Decode Execute
Target (cancel) Fetch
Branch+2 Fetch Decode Execute
Branch+3 Fetch Decode Execute

Time

([HFXWLRQ�6WDJH

The canceling process increases the cycle count of the branch to two cycles from the
normal value of one. Since the branch prediction is done based on previous flag values it
is possible to optimize the code by not changing the flags on the instruction prior to the
branch instruction. This effectively introduces an extra delay slot EHIRUH the branch
instruction. If the pre-branch slot cannot be filled with useful code, it can be used for
instruction affecting the flags. This causes no penalty to the execution time compared to
the case where the pre-branch instruction would be a NOP. On the other hand, it saves one
code memory word.

The Geometry Processor has no interrupts. All synchronizing to the external world must
be done by polling. Because of the nature of the Geometry Processor tasks this should
cause no problems.

rev. 1.03 08.03.00

��

When accessing data from external sources the Geometry Processor may need to wait for
the data to be ready. There are three possible sources for these wait conditions, which will
cause the Geometry Processor to enter a wait state.

First of these conditions arise from a cache miss. In this case the Geometry Processor
issues a request for the Memory Manager to fill a block of its code memory from the
cache-miss location. During the time the Memory Manager is fetching data from the
external graphics memory the Geometry Processor waits and does not process any
instructions. After the code load is complete, the Memory Manager notifies the Geometry
Processor’s Control unit, and the missed instruction is re-fetched, and normal processing
continues.

The second case for hardware wait condition can occur while issuing stream fetch
commands to the Stream I/O Unit. If the stream FIFO is empty, the Geometry Processor
will enter a wait state until a word is ready to be fetched from the stream FIFO. After the
wait the stream data word is fetched and normal processing resumes. Normally the Stream
I/O Unit will try to keep the FIFO filled, but other units accessing the external graphics
memory or the user’s program changing the Stream Read address can cause a FIFO empty
condition. The Stream I/O operation is described in more detail in chapter 4.7.4.

The third and final wait condition arises if the user sets the Geometry Processor wait bit
in the Synchronization register (PCI register 192).

It is also possible to completely reset the Geometry Processor independent of the other
units in the VS25203B chip by setting the Geometry Processor reset bit (ge_reset) in
the Synchronization PCI register. In this case all the Geometry Processor registers are set
to the initial values, however the local data memories are not affected.

���� $GGUHVVLQJ�0RGHV

The Geometry Processor support the following Addressing modes

Register Direct
Immediate (24-bit)
Short Immediate (13-bit)
Absolute (14-bit)
I/O Indirect (6-bit)
Absolute Data (4-bit)
Index Register Indirect (4-bit)

All the Arithmetic instructions use 5HJLVWHU�'LUHFW�$GGUHVVLQJ mode to provide the
operands. This means that all values used by the Arithmetic Units, the Logic Unit, the
Normalization Unit, and the Hardware Division Unit need to be loaded to the AU input
registers using one of the data-move instructions prior to performing the operations. The
Geometry Processor instruction set provides several instructions for this purpose.

The ,PPHGLDWH����ELW�$GGUHVVLQJ mode is used by the Long Immediate Load instruction
(IMMED) to load immediate values to the AU data registers, Stream Read address
(RDADDR), Stream Write address (WRADDR), or to the JMPREG register. The values are
interpreted as integers and are sign extended, except for loading to the upper part of the A-
registers. In that case the values are interpreted as fixed point values and the lower 8-bits
are zero filled.

rev. 1.03 08.03.00

��

The 6KRUW�,PPHGLDWH����ELW�$GGUHVVLQJ mode is used by the Short Immediate Load
instruction (SIMMED) to load immediate values to the Index registers, the N register, the
IO register address base register (REGBASE), or the bus index register (VTMB). The 13-bit
values are interpreted as integers and are sign extended.

The $EVROXWH����ELW�$GGUHVVLQJ mode is used for the Branch instructions to provide the
target addresses in cases where calculated jump (JMPREG) is not used. The PCI register
CODEBASE is used to give the base address for the program code in the external graphics
memory.

The ,�2�,QGLUHFW�$GGUHVVLQJ mode is used to get the addresses for the external registers
used as target for the OUT instructions. The register address is calculated by addition of
the 10-bit REGBASE register and the 6-bit immediate offset from the instruction word. If
the resulting value is too large to fit to 10 bits, the 10 lowest bits of the result are used.
The 6-bit immediate address part is interpreted as an unsigned value.

The $EVROXWH���ELW�'DWD�$GGUHVVLQJ mode is used to load values from the local data
memories to the Arithmetic Unit input registers. This addressing mode can only address
16 lowest addresses of the data memories, but it can be used to access these locations
independent of the values of the Index registers.

The ,QGH[�5HJLVWHU�,QGLUHFW���ELW�$GGUHVVLQJ mode is used to load values from the local
data memories to the Arithmetic Unit input registers. This addressing mode can address
16 addresses relative to the data memories. The data address is calculated by addition of
the 7-bit Index register and the 4-bit immediate offset from the instruction word. If the
resulting value is too large to fit to 7 bits, the 7 lowest bits of the result are used. The 4-bit
immediate address part is interpreted as an unsigned value. There are 9 Index registers for
each of the possible memory read and write operations. The XRDBASE# registers are used
when reading data to the X-registers, the YRDBASE# registers are used when reading data
to the Y-registers, and the WRBASE# registers are used when writing values to the data
memories from the A-registers.

For the local data memory load and save instructions there is one special feature to
consider. In addition of specifying the source and target memories directly in the
instruction it is possible to use data driven memory indexes. This feature uses the VTMB
register. The value of this three bit register is interpreted as three bus index values (VT,
VM, VB) according to the table below:

GHF %LQ 97 90 9% 97 90 9%
0 000 0 1 2 00 01 10
1 001 0 1 2 00 01 10*
2 010 0 2 1 00 10 01
3 011 2 0 1 10 00 01
4 100 1 0 2 01 00 10
5 101 1 2 0 01 10 00
6 110 0 1 2 00 01 10*
7 111 2 1 0 10 01 00
*) Not possible as flags value for Derive VTMB.

It is possible then to use these bit indexes to specify from what local data memory bank to
load values to the X-registers or to which memory bank to write from the A-registers.

rev. 1.03 08.03.00

��

For example if the value of the VTMB register is 011 then the instruction:
X2 = VB[0], X1 = VM[0], X0 = VT[0],

VB[1] = A0, VT[1] = A1, VM[1] = A2
will load X2 with value from memory bank 1, X1 with value from bank 0, and X0 with
value from bank 2. It will also write A0 to bank 1, A1 to bank 2, and A2 to memory bank
0.

���� *HRPHWU\�3URFHVVRU�5HJLVWHUV

������ *HQHUDO

The Geometry Processor contains many internal registers. All the registers, except for the
stream related ones are set to zero when the Geometry Processor is reset either with the
global chip reset or with the special Geometry Processor reset bit, see the Synchronization
register (PCI register 192).

The registers can be divided into four classes: Arithmetic Unit registers, Stream registers,
Index registers, and the Control registers. See table below.

5HJLVWHUV %LWV 'HVFULSWLRQ
$ULWKPHWLF�8QLW�UHJLVWHUV
X0 32b AU0X input register
X1 32b AU1X input register
X2 32b AU2X input register
Y0 32b AU0Y input register
Y1 32b AU1Y input register
Y2 32b AU2Y input register
R0 48b Multiply result [x2]
R1 48b Multiply result [x2]
R2 48b Multiply result [x2]
M0 48b Shifter input
M1 48b Shifter input
M2 48b Shifter input
A0 32b AU0 result register
A1 32b AU1 result register
A2 32b AU2 result register
6WUHDP�UHJLVWHUV
RDADDR 24b Stream Read address
WRADDR 24b Stream Write address
STREAM(HI) 32b Stream data high
STREAM(LO) 32b Stream data low

rev. 1.03 08.03.00

��

5HJLVWHUV %LWV 'HVFULSWLRQ
,QGH[�UHJLVWHUV
XRDBASE0 7b X bus 0 read index register
XRDBASE1 7b X bus 1 read index register
XRDBASE2 7b X bus 2 read index register
YRDBASE0 7b Y bus 0 read index register
YRDBASE1 7b Y bus 1 read index register
YRDBASE2 7b Y bus 2 read index register
WRBASE0 7b Write bank 0 index register
WRBASE1 7b Write bank 1 index register
WRBASE2 7b Write bank 2 index register
&RQWURO�UHJLVWHUV
N 6b Shift value / Normalization value register
PC 14b Program counter
JMPREG 14b Calculated jump address register
REGBASE 10b IO register address base register
VTMB 6b Bus index register (special decoded 3b format)
STATUS register 4b GP’s internal register, not same as register 48.

������ $ULWKPHWLF�UHJLVWHUV

5HJLVWHU %LWV 'HVFULSWLRQ
X0 32b AU0X input register
X1 32b AU1X input register
X2 32b AU2X input register
Y0 32b AU0Y input register
Y1 32b AU1Y input register
Y2 32b AU2Y input register

The Arithmetic Unit input registers are used to provide input to the AUs. In addition the
X2 and Y2 registers are used to provide inputs to the Logic unit and the Hardware
Division Unit. The X2 register is also used as input for the Normalization unit.

The X-registers can be written to from any of the local data memory banks, the Stream
I/O Unit or the General bus. The Y-registers can only be written to from the
corresponding local data memory bank.

The instruction set allows to write to all the X-registers at once with a single value. This
combination (X012) can be used on General Move instructions, MOVE_REG instructions
and the immediate load instructions (IMMED and SIMMED).

rev. 1.03 08.03.00

��

5HJLVWHU %LWV 'HVFULSWLRQ
R0 48b Multiply result [x2]
R1 48b Multiply result [x2]
R2 48b Multiply result [x2]

The Multiply result registers are pseudo-registers. The real values and format of these
registers is not available directly to the programmer. These registers contain either the
intermediate result of the multiplication (before final addition) or the (intermediate) result
of an addition operation. These registers cannot be directly written or read, but are
accessed indirectly by the Arithmetic instructions. If written through addition operations
the R-registers are sign extended from the 32-bit result, so that the effective data is in the
lower 32 bits of the R-registers.

5HJLVWHU %LWV 'HVFULSWLRQ
M0 48b Shifter input
M1 48b Shifter input
M2 48b Shifter input

The Shifter input registers cannot be directly written or read, but are accessed indirectly
by the Arithmetic instructions. These registers are used as the input for the Shifter. If
written through addition operations the M-registers are sign extended from the 32-bit
result, so that the effective data is in the lower 32 bits of the M-registers.

5HJLVWHU %LWV 'HVFULSWLRQ
A0 32b AU0 result register
A1 32b AU1 result register
A2 32b AU2 result register

The Arithmetic Unit result registers receive the final results from any arithmetic results.
The A-registers can additionally be written through the General bus by the Immediate
Load instructions. The A2 register additionally receives input from the Logic Unit due to
the Logic instructions or as a result of several special instructions through the General
bus.

The values in the A-registers can be saturated to 8-bit values with the SATURATE
instructions, and they can be tested for equality to zero with the ZERODETECT
instruction, in which case the result of the test is written to the STATUS register.
Normally any loading of the A-registers due to arithmetic instructions causes the MSB
bits of the A-registers to be written to the STATUS register. As the data format for the
Geometry Processor is 2’s complement, the MSB is one if the data value is negative.

With the Immediate Load instructions there are two ways to write to the A-registers:
either to the upper 24 bits or the lower 24 bits. When writing to the lower part, the MSB
bits are sign extended to the MSB (bit 23) of the data written. When writing to the upper
part of the A-registers, the lower 8 bits are set to zero.

rev. 1.03 08.03.00

��

������ 6WUHDP�UHJLVWHUV
5HJLVWHU %LWV 'HVFULSWLRQ
RDADDR 24b Stream Read address
WRADDR 24b Stream Write address
STREAM(HI) 32b Stream data high
STREAM(LO) 32b Stream data low

The Stream Read address register (RDADDR) contains the address from where the next
stream data item will be read by the next Stream Read operation. The address is
automatically incremented by the Stream I/O Unit. When writing to this register the
Stream I/O Unit flushes its read cache.

The Stream Write address register (WRADDR) contains the address where the next stream
data item will be written by the next Stream Write operation. The address is automatically
incremented by the Stream I/O Unit. When writing to this register the Stream I/O Unit
flushes its write buffer.

The stream data registers, stream data high (STREAM(HI))and stream data low
(STREAM(LO)), contain together the 64-bit data word to be written to the stream by a
Stream Write instruction. These registers can be written to by the MOVE_REG and
Stream Write instructions.

NOTE! The Stream registers are write only and cannot be read to the buses. See also the
page 100.

������ ,QGH[�UHJLVWHUV

5HJLVWHU %LWV 'HVFULSWLRQ
XRDBASE0 7b X bus 0 read index register
XRDBASE1 7b X bus 1 read index register
XRDBASE2 7b X bus 2 read index register
YRDBASE0 7b Y bus 0 read index register
YRDBASE1 7b Y bus 1 read index register
YRDBASE2 7b Y bus 2 read index register
WRBASE0 7b Write bank 0 index register
WRBASE1 7b Write bank 1 index register
WRBASE2 7b Write bank 2 index register

The RAM Read Index registers are used to allow the programmer to perform indexed
memory accesses. The value of the RDBASE registers are optionally added to any local
data RAM addresses when reading the memory.

The RAM Write Index registers are used to allow the programmer to perform indexed
memory accesses. The value of the WRBASE registers are optionally added to any local
data RAM addresses when writing the memory. The index registers are associated with
the local data memory banks with the same number i.e. XRDBASE0 is associated with the
X read port of the data RAM 0.

NOTE! The registers are write-only and cannot be read to the buses.

The instruction set allows writing to the index registers in a combined way. For each of
the groups (X, Y, Write) the 0 and 1 bus registers can be combined, and all registers in the
group can be written at once.

rev. 1.03 08.03.00

��

������ &RQWURO�5HJLVWHUV

5HJLVWHU %LWV 'HVFULSWLRQ
N 6b Shift value / Normalization value register
PC 14b Program counter
JMPREG 14b Calculated jump address register
REGBASE 10b IO register address base register
VTMB 6b Bus index register (special decoded 3b format)

The N register allows computed shifts to be used. The N register can be loaded from and
stored via the bus. It can be used with the Shifters by specifying the N register usage with
the Shift control bit in the A-register load operations. The N register can also be
loaded with the Normalize operation. This operation finds the number of shifts required to
normalize the number in the X2 register. (see Normalization Unit on the page 52)

The N register can be directly written and can be read via the A2 register using the A-
register load operations.

The calculated jump address register (JMPREG) is used to allow the programmer to
perform calculated branches. The value of the JMPREG can be written from the General
bus, and then be used as the next value of the PC by using the Calculated Branch
operation in the next instructions. Note that using Calculated Branches takes always two
instructions to complete. The JMPREG also serves as the storage for return addresses for
subrutine calls.

The JMPREG register can be directly written with the General Move instructions and can
be read via the A2 register using the A-register load operations. See also Figure 4.3-1 on
page 55.

The IO register address base register (REGBASE)� contains the base address for the
register writes. The value of the REGBASE register is added to any register addresses
when performing OUT instructions.
NOTE! This register is write only and cannot be read to the buses.

The bus index register (VTMB) is used to specify which memory bank will be written by
which A-register or which memory bank is used to read each X-register. The purpose is to
algorithmically select RAM banks for writing, and this can be used for example when
processing the vertices of a triangle currently being drawn in cases where the order of the
vertices is not known and affects the algorithm.

rev. 1.03 08.03.00

��

The VTMB register values are decoded in a special way described in the Table 4.5-1.

GHF %LQ 97 90 9% 97 90 9%
0 000 0 1 2 00 01 10
1 001 0 1 2 00 01 10*
2 010 0 2 1 00 10 01
3 011 2 0 1 10 00 01
4 100 1 0 2 01 00 10
5 101 1 2 0 01 10 00
6 110 0 1 2 00 01 10*
7 111 2 1 0 10 01 00

7DEOH�������6SHFLDO�GHFRGHG��E�IRUPDW��*) Not possible as flags value for Derive
VTMB.

The VTMB register can be directly written by the General Move instructions and can read
via the A2 register using the A-register load operations.

������ 6WDWXV�UHJLVWHU

The Geometry Processor has a STATUS register which contains the arithmetic flags and a
flag describing the result of the BIT_TEST operations. Note that this is internal register of
the Geometry Processor and has nothing to do with the status PCI register 48. The
STATUS register is written into in two parts. The arithmetic operations affecting to the A-
registers load the STATUS bits into the bits 0-2 of the STATUS register, and the Logic
operations load LSB of the result into bit 3 of the STATUS register.

The STATUS register bits are allocated as follows:

� � � �
QRUPDO� bit neg2 neg1 neg0
]HURGHWHFW� bit zer2 zer1 zer0

The STATUS register cannot be directly written and can read via the A2 register using the
A-register load operations.

rev. 1.03 08.03.00

��

���� ,QVWUXFWLRQ�(QFRGLQJ

The Geometry Processor instructions are formed from several fields, and the total width
of the instructions is 32 bits. All instructions have the same width, and execute in one
clock cycle. Some operations, e.g. divide, can take more than one clock cycle to complete,
but other instructions can be executed on parallel and can contain more than one parallel
operation. The encoding of the instruction words is presented in the table below.

The basic instruction classes are:
* Arithmetic (AU#)
* Parallel Move (LOAD, SLOAD, SAVE and LOAD_SAVE)
* Logic (LOGIC)
* General Move (MOVE_REG, IMMED and SIMMED)
* Branch (BRANCH)
* Miscellaneous:

- Out (OUT)
- Stream Write and Read (RD_STRM, WR_STRM and SWR_STRM)
- Special (SPEC)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 LOAD

1 0 1 LOAD_SAVE

2 1 0 0 OUT[5:1] AU6 O0 SLOAD

3 1 0 1 AU12 SLOAD

4 1 1 0 0 IMMED

5 1 1 0 1 0 AU

6 1 1 0 1 1 BRANCH

7 1 1 1 0 0 0 AS FS AU6 RD_STRM

8 1 1 1 0 0 1 MR0 FS MOVE_REG[6:1] RD_STRM

9 1 1 1 0 1 0 A2 A1 AU6 A0 SLOAD

10 1 1 1 0 1 1 A2 A1 AU6 A0 SAVE

11 1 1 1 1 0 0 SPE10 AU12 AS SPEC[6:2] OUT

12 1 1 1 1 0 1 0 0 AU6 SIMMED

13 1 1 1 1 0 1 0 1 AU12 AS SPEC[6:2] SPE10 WR_STRM

14 1 1 1 1 0 1 1 0 AU12 AS MOVE_REG WS

15 1 1 1 1 0 1 1 1 AU_14[0+1+2] OS OUT

16 1 1 1 1 1 0 0 0 MOVE_REG LOGIC

17 1 1 1 1 1 0 0 1 MOVE_REG SLOAD

18 1 1 1 1 1 0 1 0 WR_STRM SLOAD

19 1 1 1 1 1 0 1 1 SPEC SLOAD

20 1 1 1 1 1 1 0 0 SPEC SAVE

1 1 1 1 1 1 0 1 UHVHUYHG

1 1 1 1 1 1 1 0 UHVHUYHG

1 1 1 1 1 1 1 1 UHVHUYHG

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The identification numbers on the first column in the table above are referred to on the
more detailed tables to be presented on the next few chapters.

rev. 1.03 08.03.00

��

������ $ULWKPHWLF�LQVWUXFWLRQV

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AU 5 A-LOAD2 AU_OP2 R_LOAD2 ML2 AU_OP01 SH A_LD01 R_LD01 ML01
AU_14[0+1+2] 15 A2 A1 AU_OP R_LOAD ML A_LOAD_14 SH A0
AU12 3 R_LOAD A12_OP T12 AU_OP SH
AU12[2/012] 11, 13, 14 SH T12 AU_OP R_LOAD A12_OP AS
AU6 2, 12 T6 A6_OP R6
AU6[0+1+2] 9, 10 A2 A1 T6 A6_OP R6 A0
AU6[2/012] 7 AS T6 A6_OP R6

The numbers in the first column refer to rows in the table on page 64.

Full Arithmetic instructions specify different operations for AUs 0/1 and AU 2. They
consist of AU opcode, A-load, M-load and R-load parts. See AU row on table above.

Full Arithmetic instructions for single AUs specify same operations for all the AUs. They
consist of AU opcode, A-load, M-load and R-load parts. See row AU_14.

Short Arithmetic instructions specify the same A-load, M-load, and R-load operations for
all the AUs. The M-load is a shortened version of the full M-load. See row AU12.

6-bit Arithmetic instructions are the shortest version of the AU instructions. They do not
allow the most exotic possibilities of the AUs, and all the AUs execute the same
operations. Also the whole instructions is coded together in a 6-bit operation word. See
row AU6.

NOTES:
* It is possible to specify in A_LOAD and M_LOAD either AU output or R-register as
input. If the selection is not the same for both of the cases, or if one of them is not a NOP,
the result is unspecified.

* It is possible to specify the A/Y selection in both AU_OP and R_LOAD. If the selection
is not the same for both, or if one of them is not a NOP, the result is unspecified.

* For 6-bit AU, mode 0 operations, note that the Multiplication multiplies the
corresponding AU operation operands.

rev. 1.03 08.03.00

��

)LHOG�GHVFULSWLRQV�

$6
Selecting between AU*[2/012] is done using the AS select bit.

'HF %LQ 2SHUDWLRQ
0 0 Use only AU2 for the operation
1 1 Use all the AUs for the operation

$���$���$�
When selecting individual AUs to perform the AU operations the A0, A1, and A2 bits are
used.

'HF %LQ 2SHUDWLRQ
0 0 Do not use this AU for any operations
1 1 Use this AUs for the operation

6+
SHIFT select (N_reg/0)

'HF %LQ 2SHUDWLRQ
0 0 No SHIFT
1 1 Use N register for shifting

�������� $ULWKPHWLF�8QLW�RSFRGH
This field selects the operation of the adder in the Arithmetic Unit.

$8B23��$8B23���$8B23��

'HF %LQ 2SHUDWLRQ
 0 0000 NOP
 1 0001 X+A
 2 0010 X-A
 3 0011 -X+A
 4 0100 X+Y
 5 0101 X-Y
 6 0110 -X+Y
 7 0111 A
 8 1000 -A
 9 1001 X
10 1010 -X
11 1011 Y
12 1100 -Y
13 1101 0
14 1110 inc(A)
15 1111 dec(A)

rev. 1.03 08.03.00

��

�������� $�ORDG
These fields select the source of data to be loaded into the A-register.

$B/2$'�
Select source for loading the A2 register.

'HF %LQ 2SHUDWLRQ
 0 00000 NOP
 1 00001 AU result
 2 00010 M2
 3 00011 hi(R2)
 4 00100 lo(R2)
 5 00101 Saturate 8b signed
 6 00110 Saturate 8b unsigned
 7 00111 -M0-M1

 8 01000 M2
 9 01001 M1
10 01010 M0
11 01011 M0-M1
12 01100 M0-M2
13 01101 M1-M2
14 01110 M0+M1+M2
15 01111 -M0-M1+M2

16 10000 -M2
17 10001 -M1
18 10010 -M0
19 10011 M0+M1
20 10100 -M0+M1
21 10101 M0+M2
22 10110 -M0+M2
23 10111 M1+M2

24 11000 -M1+M2
25 11001 -M1-M2
26 11010 -M0-M2
27 11011 M0-M1+M2
28 11100 M0+M1-M2
29 11101 -M0+M1+M2
30 11110 M0-M1-M2
31 11111 -M0+M1-M2

rev. 1.03 08.03.00

��

$B/2$'B��
Select source for loading to A-registers with AU_14 instruction.

'HF %LQ 2SHUDWLRQ 1RWH
 0 0000 NOP
 1 0001 AU result
 2 0010 M
 3 0011 hi(R)
 4 0100 lo(R)
 5 0101 Saturate 8b signed
 6 0110 Saturate 8b unsigned
 7 0111 -M0-M1 (2)
 8 1000 M2
 9 1001 M1 (2)
10 1010 M0 (2)
11 1011 M0-M1 (2)
12 1100 M0-M2 (2)
13 1101 M1-M2 (2)
14 1110 M0+M1+M2 (2)
15 1111 -M0-M1+M2 (2)
(2) This operation is available only on the AU2. For other AU’s it is a NOP.

$B/2$'��
Select source for loading to A0 and A1 registers.

'HF %LQ 2SHUDWLRQ
 0 000 NOP
 1 001 AU result
 2 010 M
 3 011 hi(R)
 4 100 lo(R)
 5 101 Saturate 8b signed
 6 110 Saturate 8b unsigned
 7 111 UHVHUYHG

�������� 0�ORDG
These fields select the source for loading into the M-registers.

0B/2$'��0�B/2$'��0��B/2$'

'HF %LQ 2SHUDWLRQ
 0 00 NOP
 1 01 AU result
 2 10 R
 3 11 UHVHUYHG

rev. 1.03 08.03.00

��

�������� 5�ORDG
These fields specify the source to be loaded into the R-registers. They also specify the
multiplication operation.

5B/2$'��5B/2$'���5B/2$'��

'HF %LQ 2SHUDWLRQ 1RWHV
 0 000 NOP
 1 001 AU result
 2 010 hi(X×A) Multiply higher 24-bits of the operands
 3 011 hi(X×Y) Multiply higher 24-bits of the operands
 4 100 lo(X×A) Multiply lower 24-bits of the operands
 5 101 lo(X×Y) Multiply lower 24-bits of the operands
 6 110 UHVHUYHG
 7 111 UHVHUYHG

�������� $8��
Special fields for the 12-bit Arithmetic instructions.

7��
This field specifies the mode of the AU12 instruction.

'HF %LQ 2SHUDWLRQ
 0 0 AU12 mode 0: A=AU/R; R=R_LOAD
 1 1 AU12 mode 1: A=func(M0,M1,M2); M=R; R=R_LOAD

$��B23
This field specifies the operation to be performed by the AU12 instruction.

AU12 mode 0:
'HF %LQ 2SHUDWLRQ
 0 000 NOP
 1 001 AU result
 2 010 M
 3 011 hi(R)
 4 100 lo(R)
 5 101 Saturate 8b signed
 6 110 Saturate 8b unsigned
 7 111 UHVHUYHG

rev. 1.03 08.03.00

��

AU12 mode 1:
'HF %LQ 2SHUDWLRQ 1RWH
 0 000 A=M2
 1 001 A=M1 (2)
 2 010 A=M0 (2)
 3 011 A=M0-M1 (2)
 4 100 A=M0-M2 (2)
 5 101 A=M1-M2 (2)
 6 110 A=M0+M1+M2 (2)
 7 111 A=-M0-M1+M2 (2)
(2) This operation is available only on the AU2. For other AU’s it is a NOP.

�������� ��ELW�$8�RSHUDWLRQV��$8��
Special fields for the 6-bit Arithmetic instructions. $���$��DQG�$��are described earlier.

7�
This field specifies the operation to be performed by the AU6 instruction.

AU6 mode select:
'HF %LQ 2SHUDWLRQ
 0 0 Mode 0: A=misc; R=MUL
 1 1 Mode 1: A=vect/M; M=R; R=MUL

$�B23
AU6 operation code, field specifying the operation to be performed by the AU6
instruction.

Mode 0: (A=misc; R=MUL)

%LW�V�)XQFWLRQ

3-0 A-load:
'HF %LQ 2SHUDWLRQ 1RWH
0 0000 NOP no R-load
1 0001 A=X+A R=X × A
2 0010 A=X+Y R=X × Y
3 0011 A=X-Y R=X × Y
4 0100 A=-X+Y R=X × Y
5 0101 A=X R=X × Y
6 0110 A=-X R=X × Y
7 0111 A=Y R=X × Y
8 1000 A=-Y R=X × Y
9 1001 A=0 R=X × Y
10 1010 UHVHUYHG
11 1011 A=inc(A) R=X × A
12 1100 A=dec(A) R=X × A
13 1101 A=hi(R) R=X × Y
14 1110 A=lo(R) R=X × Y
15 1111 UHVHUYHG

rev. 1.03 08.03.00

��

Mode 1: (A=vect/M; M=R; R=MUL)

%LW�V�)XQFWLRQ

3-1 A-load (MUL = X × Y):
'HF %LQ 2SHUDWLRQ 1RWH
0 000 A=M
1 001 A=M1 (2)
2 010 A=M0 (2)
3 011 A=M0-M1 (2)
4 100 A=M0-M2 (2)
5 101 A=M1-M2 (2)
6 110 A=M0+M1+M2 (2)
7 111 A=-M0-M1+M2 (2)
(2) This operation is available only on the AU2. For other AU’s it is a
NOP.

0 SHIFT select (N_reg/0):
'HF %LQ 2SHUDWLRQ
0 0 No SHIFT
1 1 Use N register for shifting

5�
AU6 R-load operation

'HF %LQ 2SHUDWLRQ 1RWHV
0 0 R=lo(MUL) Multiply lower 24-bits of the operands
1 1 R=hi(MUL) Multiply higher 24-bits of the operands

NOTE! A/Y selection for multiplication is based on the A-load or Y if not otherwise
specified.

rev. 1.03 08.03.00

��

������ 3DUDOOHO�0RYH�LQVWUXFWLRQV

These instructions provide means for moving data between local data RAM and the AU registers.

�������� /RDG�LQVWUXFWLRQV

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LOAD 0 0 0 X-sel XI X01-addr Y01-addr Y-sel X2-addr Y2-addr
SLOAD 2,3,9,17,18,19 XS-sel XI Y-sel X-addr Y-addr

The numbers 0 for LOAD and 2, 3, 9, 17, 18 and 19 for SLOAD refer to rows in the table on page
64.

4.6.2.1.1 Full load (LOAD)

;,

%LW�V�)XQFWLRQ

0 R-register indexed load select
0 = fixed buses
1 = indexed buses (VT,VM,VB)

;�6HO

%LW�V�)XQFWLRQ

5-4 X2 source select:
;, � �

;VHO
00 NOP NOP
01 B0 VT
10 B1 VM
11 B2 VB

3-2 X1 source select:
;, � �

;VHO
00 NOP NOP
01 B0 VT
10 B1 VM
11 B2 VB

1-0 X0 source select:
;, � �

;VHO
00 NOP NOP
01 B0 VT
10 B1 VM
11 B2 VB

rev. 1.03 08.03.00

��

<�VHO

%LW�V�)XQFWLRQ

2 Y2 source select
0 - NOP
1 - Load from associated bus (B2->Y2)

1 Y1 source select
0 - NOP
1 - Load from associated bus (B1->Y1)

0 Y0 source select
0 - NOP
1 - Load from associated bus (B0->Y0)

;���DGGU
This field specify the addresses to be used in the X-port of the data memories 0 and 1.

%LW�V�)XQFWLRQ

4 X0,X1 index register select
0=Don’t use index register (accessing addresses 0-15)
1=Use index register for memory address generation
X0 uses XRDBASE0, X1 uses XRDBASE1

3-0 Memory address for X0 and X1 moves

;��DGGU
This field specifies the address to be used in the X-port of the data memory 2.

%LW�V�)XQFWLRQ

4 X2 index register select
0=Don’t use index register (accessing addresses 0-15)
1=Use index register for memory address generation
Uses XRDBASE2.

3-0 Memory address for X2 move

rev. 1.03 08.03.00

��

<���DGGU
This field specify the addresses to be used in the Y-port of the data memories 0 and 1.

%LW�V�)XQFWLRQ

4 Y0,Y1 index register select
0=Don’t use index register (accessing addresses 0-15)
1=Use index register for memory address generation
Y0 uses YRDBASE0, Y1 uses YRDBASE1

3-0 Memory address for Y0 and Y1 moves

<��DGGU
This field specifies the address to be used in the Y-port of the data memory 2.

%LW�V�)XQFWLRQ

4 2 index register select
0=Don’t use index register (accessing addresses 0-15)
1=Use index register for memory address generation
Uses YRDBASE2.

3-0 Memory address for Y2 move

4.6.2.1.2 Short LOAD(SLOAD)

;,

%LW�V�)XQFWLRQ

0 X bus indexed mode select
0 = Mode 0, fixed buses
1 = Mode 1, indexed buses (VT,VM,VB)

We have two distinct cases for the ;6�VHO field depending on the
indexed mode select value:

rev. 1.03 08.03.00

��

;6�VHO
X-register source select.

Mode 0 - direct:

%LW�V�)XQFWLRQ

2 X2 select
0 - NOP
1 - Load from associated bus (B2->X2)

1 X1 select
0 - NOP
1 - Load from associated bus (B1->X1)

0 X0 select
0 - NOP
1 - Load from associated bus (B0->X0)

Mode 1 - indexed buses:

%LW�V�)XQFWLRQ

2 X2 select
0 - NOP
1 - Load from VT bus (B[VT]->X2)

1 X1 select
0 - NOP
1 - Load from VM bus (B[VM]->X1)

0 X0 select
0 - NOP
1 - Load from VB bus (B[VB]->X0)

;�DGGU
This field specifies the address to be used in the X-port of the data memories.

%LW�V�)XQFWLRQ

4 X0,X1,X2 index register select
0=Don’t use index register (accessing addresses 0-15)
1=Use index register for memory address generation
X0 uses XRDBASE0, X1 uses XRDBASE1, X2 uses XRDBASE2

3-0 Memory address for X0 and X1 moves

rev. 1.03 08.03.00

��

<�DGGU
This field specifies the address to be used in the Y-port of the data memories.

%LW�V�)XQFWLRQ

4 Y0,Y1,Y2 index register select
0=Don’t use index register (accessing addresses 0-15)
1=Use index register for memory address generation
Y0 uses YRDBASE0, Y1 uses YRDBASE1, X2 uses YRDBASE2

3-0 Memory address for Y0 and Y1 moves

�������� 6$9(

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LOAD_SAVE 1 0 1 A-sel Al X01-addr W01-addr XW-sel X2-addr W2-addr
SAVE 10, 2 A-sel Al W01-addr W2-addr

4.6.2.2.1 SAVE
$,

%LW�V�)XQFWLRQ

0 A-register indexed mode select
0 = Mode 0, fixed buses
1 = Mode 1, indexed buses (VT,VM,VB)

We have two distinct cases for the A-sel field depending on the
indexed mode select value:

rev. 1.03 08.03.00

��

$�VHO
Select which A-register drives which write port of the data memories.

Mode 0 - direct:

)LHOG %LWV 1RWHV
B2-driver 2b
B1-driver 2b
B0-driver 2b
A-sel 6b Total

%LW�V�)XQFWLRQ

5-4 B2-driver:
'HF %LQ 2SHUDWLRQ
0 00 NOP
1 01 A0 drives the bus
2 10 A1 drives the bus
3 11 A2 drives the bus

3-2 B1-driver:
'HF %LQ 2SHUDWLRQ
0 00 NOP
1 01 A0 drives the bus
2 10 A1 drives the bus
3 11 A2 drives the bus

1-0 B0-driver:
'HF %LQ 2SHUDWLRQ
0 00 NOP
1 01 A0 drives the bus
2 10 A1 drives the bus
3 11 A2 drives the bus

rev. 1.03 08.03.00

��

Mode 1 - indexed:

)LHOG %LWV 1RWHV
Bus index select 3b
Write enable 3b
A-sel 6b Total

%LW�V�)XQFWLRQ

5-3 Bus index select:
LG[97 90 9%
000 A0 A1 A2
001 A0 A2 A1
010 A1 A0 A2
011 A1 A2 A0
100 A2 A1 A0
101 A2 A0 A1
110 A2 A2 A1
111 A1 A2 A2

2 Write to the VT bus

1 Write to the VM bus

0 Write to the VB bus

:���DGGU
This field specifies the address to be used in the write port of data memories 0 and 1.

%LW�V�)XQFWLRQ

4 Bus 0 and 1 index register select
0=Don’t use index register (accessing addresses 0-15)
1=Use index register for memory address generation
Bus 0 uses WRBASE0, bus 1 uses WRBASE1

3-0 Memory address for bus 0 and 1 moves

:��DGGU
This field specifies the address to be used in the write port of data memory 2.

%LW�V�)XQFWLRQ

4 Bus 2 index register select
0=Don’t use index register (accessing addresses 0-15)
1=Use index register for memory address generation
Uses WRBASE2.

3-0 Memory address for bus 2 move

rev. 1.03 08.03.00

��

4.6.2.2.2 Combined LOAD and SAVE (LOAD_SAVE)

;:�VHO
X-register source select.

%LW�V�)XQFWLRQ

2 X2 select
0 - NOP
1 - Load from associated bus (B2->X2)

1 X1 select
0 - NOP
1 - Load from associated bus (B1->X1)

0 X0 select
0 - NOP
1 - Load from associated bus (B0->X0)

2WKHU�ILHOGV as specified in previous instructions.

rev. 1.03 08.03.00

��

������ /RJLF�LQVWUXFWLRQV

Logic instructions are implemented by driving directly the control signals for the Logic
Unit. See chapter Logic Unit on page 51 for more information on the Logic Unit
implementation.

These are performed by the Logic unit, and include all normal two and one operand logic
functions, bit-field extraction and copying operations, and bit-test and set operations. The
result of the Logic operations is put into the A2 register.

The SETBIT operation sets bits of the value read from the X2 register. The CLRBIT
operation clears bits of the value read from the X2 register. The bits to be set or cleared
are indicated by the value of the shift field. The COPYBIT operation copies a bit-field
from the Y2 register into the value of X2 register. The field in the Y2 register starts from
the value indicated by the shift value and is mask bits long. The field in the X2 register
that is to be copied into is at the same location.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LOGIC 16 LOGIC_OP SHIFT MASK

%LW�V�)XQFWLRQ

16 '6+,)7
0 = no shift, 1 = shift down by shift.

15 ,19
0 = don’t invert, 1 = invert data.

14 ;25
0 = X OR Y, 1 = X XOR Y

13:12 <6(/

'HF %LQ 2SHUDWLRQ
0 00 Y = Y2
1 01 Y = 0
2 10 Y = Y2 AND bitmask
3 11 Y = NOT (bitmask)

11:10 ;6(/

'HF %LQ 2SHUDWLRQ
0 00 X = X2 AND Y2
1 01 X = 0
2 10 X = X2 AND NOT (bitmask)
3 11 X = X2 AND bitmask

9-5 6+,)7
Bits to shift for EXTRACT (5 bits -> 0-31 down).

4-0 0$6.
Number of bits to mask (5 bits -> 0-31 bits).

rev. 1.03 08.03.00

��

Examples of the useful Logic instructions are presented in the table below, see schematic
for more exotic operations. The first three single bin bits present, in the order, DSHIFT,
INV and XOR. The next two bin bit series present the YSEL and XSEL.

%LQ 2SHUDWLRQ 1RWHV
0 0 0 01 00 AND
0 1 0 01 00 NAND
0 0 0 00 10 OR
0 1 0 00 10 NOR
0 0 1 00 10 XOR
0 1 1 00 10 XNOR
0 1 0 01 10 NOT X
0 1 0 00 11 NOT Y
0 0 0 01 10 PASS X (mask must be 0)
0 0 0 00 11 PASS Y
1 0 0 01 11 EXTRACT X
1 0 0 01 11 BIT_TEST X
1 0 0 10 01 EXTRACT Y
1 0 0 10 01 BIT_TEST Y
0 0 0 10 10 COPYBIT(X,Y)
0 0 0 11 10 SETBIT(X)
0 0 0 01 10 CLRBIT(X)
0 0 1 11 11 NEXTRACT EXTRACT (not X)
0 0 0 01 11 MASK_AND X
0 0 0 10 01 MASK_AND Y

rev. 1.03 08.03.00

��

������ *HQHUDO�0RYH�LQVWUXFWLRQV

General Move instructions are responsible for moving data other ways than what is
possible using the Parallel Move instructions, i.e. not between AU registers and the data
memory.

With these operations it is possible to store or load any register in the Geometry Processor
(accessible from the buses) to from any other register or memory, and load any register
with an immediate data. It is also possible to move data from the A-registers to the stream
memory with these operations. The special registers can be loaded from the A-registers
using these operations. The amount of data to be moved in one operation is limited with
these operations.

NOTE! If a Normalize operation (NORM) is performed at the same time than a move to
the N register, the N register will be written with the results of the NORM operation, and
NOT the value which was moved.

�������� 0RYH�IURP�$�UHJLVWHUV�WR�RWKHU�*3�UHJLVWHUV

NOTE: If using MOVE_REG together with RD_STRM, and using the X-register targets
in register move, the result is unspecified. For the NOP the MOVE_REG fields SRC and
REG_DST must both be zeros.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOVE_REG 8 S1 S0 REG_DST
MOVE_REG 14 S1 S0 REG_DST
MOVE_REG 16, 17 S0 REG_DST S1

65&�>6��6�@

'HF %LQ 2SHUDWLRQ
0 00 NOP
1 01 A0
2 10 A1
3 11 A2

rev. 1.03 08.03.00

��

5(*B'67

'HF %LQ 2SHUDWLRQ 1RWHV
0 00000 NOP
1 00001 A0
2 00010 A1
3 00011 A2
4 00100 RDADDR Stream Read address, 24b
5 00101 WRADDR Stream Write address, 24b
6 00110 JMPREG
7 00111 X012 Writes to all X-registers.
8 01000 X0
9 01001 X1
10 01010 X2
11 01011 XRDBASE0
12 01100 XRDBASE1
13 01101 XRDBASE2
14 01110 XRDBASE01 Writes to XRDBASE0 and XRDBASE1
15 01111 XRDBASE012 Writes to all the XRDBASES
16 10000 YRDBASE0
17 10001 YRDBASE1
18 10010 YRDBASE2
19 10011 YRDBASE01 Writes to ÝRDBASE0 and YRDBASE1
20 10100 YRDBASE012 Writes to all the YRDBASES
21 10101 WRBASE0
22 10110 WRBASE1
23 10111 WRBASE2
24 11000 WRBASE01 Writes to WRBASE0 and WRBASE1
25 11001 WRBASE012 Writes to all the WRBASES
26 11010 N
27 11011 REGBASE
28 11100 VTMB Special decoded 3b format, see table below.
29 11101 STREAM(HI) Stream data high
30 11110 STREAM(LO) Stream data low
31 11111 UHVHUYHG

rev. 1.03 08.03.00

��

�������� ,PPHGLDWH�GDWD�ORDGV

Immediate Loads move constant data specified in the instruction to Geometry Processor
registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMMED 4 REG_LONG IMMED-data 24
SIMMED 12 REG_SHORT IMMED-data 13

4.6.4.2.1 IMMED
This specifies the Long Immediate Load instruction source and destination.

,00('�GDWD��
IMMED-data24 is a signed 24-bit data word, which is sign extended for longer registers,
and truncated from upper bits for shorter registers.

5(*B/21*:
'HF %LQ 2SHUDWLRQ 1RWHV
0 0000 NOP
1 0001 A0_lower 32b
2 0010 A1_lower 32b
3 0011 A2_lower 32b
4 0100 RDADDR Stream Read address, 24b
5 0101 WRADDR Stream Write address, 24b
6 0110 JMPREG 14b
7 0111 X012 Writes to all X-registers.
8 1000 X0 32b (load lower 24b)
9 1001 X1 32b (load lower 24b)
10 1010 X2 32b (load lower 24b)
11 1011 A0_upper 32b
12 1100 A1_upper 32b
13 1101 A2_upper 32b
14 1110 UHVHUYHG
15 1111 UHVHUYHG

rev. 1.03 08.03.00

��

4.6.4.2.2 SIMMED
This specifies the source and destination for the Short Immediate Load instruction.

,00('�GDWD��
IMMED-data13 is a signed 13-bit data word, which is sign extended for longer registers,
and truncated from upper bits for shorter registers.

5(*B6+257�
'HF %LQ 2SHUDWLRQ 1RWHV
0 00000 NOP
1 00001 UHVHUYHG
2 00010 UHVHUYHG
3 00011 UHVHUYHG
4 00100 UHVHUYHG
5 00101 UHVHUYHG
6 00110 UHVHUYHG
7 00111 UHVHUYHG
8 01000 UHVHUYHG
9 01001 UHVHUYHG
10 01010 UHVHUYHG
11 01011 XRDBASE0
12 01100 XRDBASE1
13 01101 XRDBASE2
14 01110 XRDBASE01 Writes to XRDBASE0 and XRDBASE1
15 01111 XRDBASE012 Writes to all the XRDBASES
16 10000 YRDBASE0
17 10001 YRDBASE1
18 10010 YRDBASE2
19 10011 YRDBASE01 Writes to YRDBASE0 and YRDBASE1
20 10100 UHVHUYHG
21 10101 WRBASE0
22 10110 WRBASE1
23 10111 WRBASE2
24 11000 WRBASE01 Writes to WRBASE0 and WRBASE1
25 11001 WRBASE012 Writes to all the WRBASES
26 11010 N
27 11011 REGBASE IO register address base register
28 11100 VTMB Special decoded 3b format, see table below.
29 11101 UHVHUYHG
30 11110 UHVHUYHG
31 11111 UHVHUYHG

VTMB register bit encoding:
GHF ELQ 97 90 9% 97 90 9%
0 000 0 1 2 00 01 10
1 001 0 1 2 00 01 10
2 010 0 2 1 00 10 01
3 011 2 0 1 10 00 01
4 100 1 0 2 01 00 10
5 101 1 2 0 01 10 00
6 110 0 1 2 00 01 10
7 111 2 1 0 10 01 00

rev. 1.03 08.03.00

��

������ %UDQFK�LQVWUXFWLRQV

There are two major Branch categories: Jumps and Subroutine Calls. It is possible to use
either unconditional or conditional branches. Conditional branches use the STATUS
register to evaluate the branch conditions. The STATUS register contains the sign bits of
all the A-registers in the AUs, and the BIT_TEST flag from the Logic Unit. Also the
branches can be direct or indirect, in which case the branch address is taken from the
JMPREG register. All the branches are delayed.

When doing a CALL operation, the return address is saved into the JMPREG. The return
address will be ����WKH�DGGUHVV�RI�WKH�&$//, because of the delayed branching. The next
instruction following the CALL operation is executed before executing the first
instruction of the subroutine. Doing more than one CALL operation after each other
without a corresponding return operation between them will overwrite the contents of the
JMPREG, and returns after the first one to transfer the control to the same location. It is
possible to save the value of the JMPREG to do multilevel CALLs. In this case it is on the
programmer’s responsibility to save and restore the correct values from and into the
JMPREG.

The JUMP condition is evaluated in the following way:

where the $1'BUHGXFH function ANDs all the bits from the calc_mask together
producing a single value.

For programming the following special cases may be useful:
JUMP always: use_mask = 0000

inv_cond = 0

JUMP never: use_mask = 0000
inv_cond = 1

([DPSOHV�

JUMP N2: use_mask = 0100
inv_mask = 0000
inv_cond = 0

JUMP not(N2): use_mask = 0100
inv_mask = 0100
inv_cond = 0

JUMP N2 & N1: use_mask = 0110
inv_mask = 0000
inv_cond = 0

calc_mask = (status ^ inv_mask) | ~use_mask; �
�FUHDWH�PDVN�
�
if (inv_cond == 1) {
 do_jump = @~&calc_mask; �
�ELWZLVH�1$1'�UHGXFWLRQ

�
} else {
 do_jump = @&calc_mask; �
�ELWZLVH�$1'�UHGXFWLRQ�
�
}

rev. 1.03 08.03.00

��

JUMP not(N2) & not(N1):
use_mask = 0110
inv_mask = 0110
inv_cond = 0

JUMP N2 | N1: use_mask = 0110
inv_mask = 0110
inv_cond = 1

JUMP not(N2) | not(N1):
use_mask = 0110
inv_mask = 0000
inv_cond = 1

3URJUDP�DGGUHVV�VSDFH�
Maximum address space for program memory is 14 bits. The on chip memory is 512
words divided into 4 banks that are cached from the out of chip memory (zero address is
set by CODEBASE). Writing to the CODEBASE register from the Geometry Prosessor
allows one to have more that one logical address space within the external memory. This
can be used to extend the effective program memory beyond 14 bits (16384 words). See
also the page 54.

8VLQJ�WKH�3UHFDFKH�LQVWUXFWLRQ�
There is an A/advice bit within the branch instruction. The advice bit tells that this is not a
real branch to be taken, but it advices the cache system to pre-load the cache contents for
a forthcoming branch instruction, to save a cache miss. This feature can be used to greatly
reduce the amount of time spent in waiting instruction memory cache updates. Only valid
information for advice type branch is the immediate address.

Hint: Since the return from the subroutine takes the return address from the JMPREG, it is
possible to perform non-conditional calculated jumps by using the RETURN operation.

rev. 1.03 08.03.00

��

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BRANCH 6 A TYPE IC USE_MASK INV_MASK X BRANCH-addr

%LW�V�)XQFWLRQ

26 $
Advice bit:
0 = Normal branch instruction.
1 = Precache instruction, do not branch.

25-24 7<3(
Branch type

'HF %LQ 2SHUDWLRQ
0 00 immediate jump
1 01 calculated jump
2 10 immediate call
3 11 calculated call

23 ,& (INV_COND)
Invert condition, invert evaluated branch condition meaning. See before
for description of usage.

22-19 86(B0$6.
Condition code usage mask. See before for description of usage.

18-15 ,19B0$6.
Condition code negation mask. See before for description of usage.

14 UHVHUYHG

13-0 %5$1&+�DGGUHVV
Not used for calculated (JMPREG) branches.

rev. 1.03 08.03.00

��

������ 0LVFHOODQHRXV�LQVWUXFWLRQV

These instructions include all the rest of the instruction that was not included into the
previous classes. These are OUT, Stream Write, Stream Read and Special instructions.

�������� 287�LQVWUXFWLRQ

IO register address space is 10 bits, and the address of the register to be written to is
formed always by adding the current value of REGBASE to the address supplied in the
instruction. See also chapter 4.7.2.

There is one special case (type 15) where the OUT operation is conditional to the state of
the OS bit in the out instruction. In all other cases if the OUT operation is part of the
instruction it will be done with no regards to the OUT address.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OUT 15 OS OUT-addr

OUT 11 OUT-addr

OUT 2 OUT[5:1] O0

NOTE! Register writes can be performed only from A2 register.
26

'HF %LQ 2SHUDWLRQ
0 0 Don’t do any OUT operations
1 1 Do the specified OUT operation

rev. 1.03 08.03.00

��

�������� 6WUHDP�:ULWH�DQG�6WUHDP�5HDG

These instructions read and write data from/to the stream. See also chapter 4.7.4.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RD_STRM 8, 7 FS F_X2 X2_mode F_X1 X1-mode F_X0 X0-mode

WR_STRM 13 SRC SF WS
WR_STRM 18 SRC SF WS
SWR_STRM 14 WS

4.6.6.2.1 Stream Write (WR_STRM and SWR_STRM)

This instruction writes 32 bits of data to the Stream registers (STREAM(HI) and
STREAM(LO)) and possibly initiates a write to the external graphics memory.

65&
Source register

'HF %LQ 2SHUDWLRQ
0 00 NOP
1 01 A0
2 10 A1
3 11 A2

6)
Data format

'HF %LQ 2SHUDWLRQ
0 0 lower 32-bit
1 1 upper 32-bit

:6
Do write

'HF %LQ 2SHUDWLRQ
0 0 Don’t write stream data out
1 1 Write stream data out

4.6.6.2.2 Stream Read (RD_STRM)

The stream data is stored into a stream fetch register which is a 64-bit register. The stream
fetch register is visible through the Stream Read instruction. The fetch register can be read
in various formats. The general view is illustrated below:

63 0
7 6 5 4 3 2 1 0 byte (8 bits)
3 2 1 0 short (16 bits)

1 0 int (32 bits)
I 24b 0 misc

rev. 1.03 08.03.00

��

NOTE: If using MOVE_REG together with RD_STRM, and using the X-register targets
in register move, the result is unspecified.

%LW�V�)XQFWLRQ

24)6
Fetch Stream. Fetch new data to the stream fetch register after reading
this value.

23-18 <Unused for RD_STRM>

17-16)B;�
Data format for X2 read

'HF %LQ 2SHUDWLRQ
0 00 signed
1 01 unsigned
2 10 fixed
3 11 special

15-12 ;��PRGH
Mode for X2 read

'HF %LQ 1XPHULF 6SHFLDO
0 0000 NOP NOP
1 0001 24b status 1
2 0010 int 1 status 0
3 0011 int 0
4 0100 short 3
5 0101 short 2
6 0110 short 1
7 0111 short 0
8 1000 byte 7 8-bit mult by 16 (I)
9 1001 byte 6 8-bit mult by 8 (I)
10 1010 byte 5 8-bit mult by 4 (I)
11 1011 byte 4 8-bit mult by 2 (I)
12 1100 byte 3 float conv -> integer (bits 63-32)
13 1101 byte 2 float conv -> integer (bits 31-0)
14 1110 byte 1 float conv -> fixed (bits 63-32)
15 1111 byte 0 float conv -> fixed (bits 31-0)

11-10)B;�
Data format for X1 read, bit assignments equal to F_X2.

9-6 ;��PRGH
Bit assignments equal to X2-mode.

5-4)B;�
Data format for X0 read, bit assignments equal to F_X2.

3-0 ;��PRGH
Bit assignments equal to X2-mode.

rev. 1.03 08.03.00

��

�������� 6SHFLDO�LQVWUXFWLRQV

This set of operations perform a specialized set of instructions. These include return from
subroutine, absolute value compare, etc. The common thing with these operations is that
they perform a not very often needed functionality which is done with special functional
blocks and does not need any parameters to execute.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPEC 19, 20 SPEC
SPEC 13 SPEC[6:2] SPE10
SPEC 11 SPE10 SPEC[6:2]

4.6.6.3.1 RETURN instruction

The RETURN instruction returns from a subroutine previously entered with a CALL
operation. The PC is restored from the JMPREG, and the next instruction fetched will be
the instruction that is at address ����&$//�DGGUHVV (because of the delayed branching).
The next instruction following the RETURN operation is executed before returning to the
main program. Since the return from the subroutine takes the return address from the
JMPREG, it is possible to perform non-conditional calculated jumps by using the
RETURN operation. See also Figure 4.3-1 on page 55.

4.6.6.3.2 Normalize instruction

The Normalize instruction (NORM) takes the number to normalize from the X2 register
and the normalization shift amount will be placed in the N register such that it is easy to
perform the actual normalization step by just shifting the number by the value of N
register.

4.6.6.3.3 Derive VTMB instruction

The Derive VTMB instruction performs the bus index sort operation required in the
triangle draw algorithm. It reads the STATUS register and uses that to calculate the value
for the internal VTMB register. The instruction causes the index of the largest value to be
written into the VT-part, the index of the middle item into the VM-part and the index of
the smallest into the VB-part of the register. The instruction is explained in the table
below:
E��E� E��E� E��E� WRS PLG ERW RUGHU

0 0 0 b0 b1 b2 b0>=b1>=b2
0 0 1 - - - N/A
0 1 0 b0 b2 b1 b0>=b2>b1
0 1 1 b2 b0 b b2>b0>=b1
1 0 0 b1 b0 b2 b1>b0>=b2
1 0 1 b1 b2 b0 b1>=b2>b0
1 1 0 - - - N/A
1 1 1 b2 b1 b0 b2>b1>b0

AU2 AU1 AU0

rev. 1.03 08.03.00

��

Where the values b0, b1, and b2 correspond to indices 0, 1, and 2 correspondigly. The
correct instruction sequence is:

4.6.6.3.4 Division instruction

The Division instruction performs hardware division. The Hardware Division block is
capable to perform a 32-bit by 32-bit division with 32 bits result or 24-bit by 24-bit
division giving 24 bits result. The remainder is also available for use. The performed
division is a signed integer by unsigned integer division of X2 by Y2. The result of the
division will be available after 16 or 12 clock cycles respectively, and can be read into the
A2 register using another of the SPEC instructions. The division block is not pipelined,
and thus it is NOT possible to start a new divisions every clock cycle. If new divisions are
not started the result of the division will remain for loading at the output of the division
block. Refer to the instructions 8 - 15 on table below.

For further information see the chapter on page 52.

4.6.6.3.5 Special AU instructions

Special AU instructions allow loading values of STATUS, N, and JMPREG to A2;
saturation of A-register values to 8-bit signed and unsigned format; absolute value
operations; and comparison of A-register values to zero. Refer to the instructions 16 - 39
on table below.

��6RUW�YHUWLFHV
��D�� �E��E���D�� �E��E���D�� �E��E�

x2 = b1[ty], x1 = b2[ty], x0 = b2[ty] !
a = x !
x2 = b0[ty], x1 = b1[ty], x0 = b0[ty] !
a = a - x !

��VHH�WDEOH�DERYH
d_vtmb ! ��L�H��D�� �VWDWXV���YWPE� �D���
nop ! ��QRS�QHHGHG�IRU�YWPE�FKDQJH

x2 = vt[ty], x1 = vm[ty], x0 = vb[ty] !

��DIWHU�WKLV VHTXHQFH�LW�LV�NQRZQ�WKDW�
��[��� �[��� �[���L�H��YW�KDV�WKH�ORZHVW�YDOXH�

rev. 1.03 08.03.00

��

'HILQHG�63(&�LQVWUXFWLRQV:
'HF %LQ 2SHUDWLRQ 1RWH
0 0000000 NOP
1 0000001 RETURN
2 0000010 UHVHUYHG
3 0000011 UHVHUYHG
4 0000100 Normalize N=NORM(X2)
5 0000101 UHVHUYHG
6 0000110 Derive VTMB from STATUS register.
7 0000111 UHVHUYHG

8 0001000 Start divide 32-bit X2/Y2
9 0001001 Start divide 24-bit X2/Y2
10 0001010 Start divide 32-bit X/(stored)
11 0001011 Start divide 24-bit X/(stored)
12 0001100 A2 <= Quotient
13 0001101 A2 <= Remainder (*)
14 0001110 UHVHUYHG
15 0001111 UHVHUYHG

16 0010000 A2 <= STATUS
17 0010001 A2 <= N
18 0010010 A2 <= JMPREG
19 0010011 UHVHUYHG
20 0010100 Saturate A012 8b unsigned
21 0010101 Saturate A012 8b signed
22 0010110 UHVHUYHG
23 0010111 UHVHUYHG

24 0011000 A=abs(X)
25 0011001 A=abs(A)
26 0011010 A=abs(Y)
27 0011011 A=-abs(X)
28 0011100 A=-abs(A)
29 0011101 A=-abs(Y)
30 0011110 A=A+abs(X)
31 0011111 A=A-abs(X)

32-39 0100AAA Zero detect (A2, A1, A0)

40-47 0101xxx UHVHUYHG
48-55 0110xxx UHVHUYHG
56-63 0111xxx UHVHUYHG

64-127 1xxxxxx UHVHUYHG
(*) Remainder is not always valid/useful. Algorithm requires restore step for negative
remainders, see example below. Remainder is not valid for cases abs(X)<Y

rev. 1.03 08.03.00

��

 a2 = remainder ! ��*HW�DFWXDO�UHPDLQGHU��PD\�EH�QHJDWLYH
 jmp(4,4,positive) ! ��)L[�QHJDWLYH�UHPDLQGHU��RWKHUZLVH�UHDG\
 x2 = b2[divider] ! ��*HW�GLYLGHU��GHOD\�VORW�
 a2 = a2 + x2 !
 a2 = a2 + x2 ! ���
UHPDLQGHU����
GLYLGHU
positive:

��$��QRZ�KDV�WKH�UHPDLQGHU�YDOXH�WLPHV��

rev. 1.03 08.03.00

��

���� *HRPHWU\�3URFHVVRU�([WHUQDO�,QWHUIDFH

������ *HQHUDO�LQIRUPDWLRQ

The Geometry Processor has two interfaces: the Stream I/O and the Register Out bus, see
chapter Geometry Processor Bus Structure on page 47. The Stream I/O interface allows
the processor to either access the on card memory (read and write) or read data from the
host computer through the PCI bus (Stream Read address 0). The Register Out bus allows
the processor to write to most of the PCI accessible registers of the VS25203B chip.

The non-accessible registers are:
5HJLVWHU�DGGUHVV�UDQJH)XQFWLRQ
20-29 VGA shadow registers
42-55 System control registers

NOTE! There is a delay from issuing the writes on the Register Out bus to the time the
values are visible from the PCI registers due to the internal delays of the PCI block and
the inherent nature of the PCI bus.

������ *HRPHWU\�3URFHVVRU�,QWHUIDFH�3&,�5HJLVWHU�'HVFULSWLRQ

The following registers are available for both the host computer and the Geometry
Processor. From the Geometry Processor, the registers can be written with the OUT
instruction. The only registers that can be read from the Geometry Processor are the
status_reg_in (register 194, at stream status 0), and data_in (register 196, at
stream status 1).

V\QFKURQL]DWLRQ UHJLVWHU���� RIIVHW����K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UV ZDLW VWUHDPBUHI
\BUHI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

rs 31 Geometry Processor reset bit (ge_reset)
wait 30 Geometry Processor wait bit
stream_ref 19:16 Stream reference
y_ref 10:0 Y reference

The ge_reset and wait bits are normal register bits, i.e. they must be cleared if they
have been set. This limits their usability from the Geometry Processor side.

Y_ref and stream_ref are threshold levels for the screen refresh line counter and the
Stream address 0 FIFO respectively. See also chapter Direct stream data on page 101.

rev. 1.03 08.03.00

��

FRGHBFRQILJ UHJLVWHU���� RIIVHW����K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

HQD

CODEBASE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

ena 31 Program memory enable
CODEBASE 16:0 Geometry Processor code base

The CODEBASE field is padded with 6 LSB zeros to get the actual word address where
the code is located in the card memory. See also Chapter 4.7.3.

VWDWXVBUHJBLQ UHJLVWHU���� RIIVHW����K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

YLGHRB\BFRRUG

SY JSL JSI JS� EOWL YF LG� LG� RN� RN�

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

video_y_coord 26:16 Video y coordinate
pv 14 Pixel visible
gpi 11 Geometry Processor interrupt active
gpf 7 Geometry Processor flag
gp0 6 Geometry Processor stream0 flag
blti 5 Block Transfer Unit idle
vc 4 video compare
id1 3 Primitive processor idle
id2 2 Pixel processor idle
ok1 1 Primitive processor init ok
ok2 0 Pixel processor init ok

Status_reg_in register is visible on the Geometry Processor stream interface as
status 0. The fields are read-only except fields pv, gpi and gpf that are read/write fields.
This is nearly the same register as status register (48).

rev. 1.03 08.03.00

��

YLGHRB\BFRRUG
Video y coordinate. Current video refresh scanline.
SY
Pixel visible. This bit is set to one when a visible pixel has been detected by the pixel
processor in the zread operation. The bit is reset by writing a value "1" into this field.
Refer to the grid_reg (102) register.
JSL
PCI Geometry Processor interrupt active. The interrupt can be caused from the Geometry
Processor by writing a value "1" to this bit. This bit should be set back to value "0" after a
while, because it is not an automatic operation. This interrupt is reset from the status
register (48).
JSI
Geometry Processor flag.
JS�
Geometry Processor stream 0 flag.
EOWL
Block Transfer Unit idle. Indicates status of the Block Transfer unit.
1 idle
0 busy
YF
This bit is one when the video_y_coord field value is equal or greater than the
video_y_ref value of the ref_reg , register 49�
LG�
Primitive processor idle. This bit is one when the primitive processor is in the idle state.
LG�
Pixel processor idle. This bit is one when the pixel processor is in the idle state.
RN�
Primitive processor initialization ok. This bit is one if initial values are allowed to be
written to the primitive processor.
RN�
Pixel processor initialization ok. It is used for finding out when the pixel processor can be
initialized. In VS25203, it is given by id1 and id2.

GDWDBLQ UHJLVWHU���� RIIVHW����K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

GDWDBLQ

GDWDBLQ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

data_in 31:0 Data transferring to Geometry Processor

Data_in register is PCI writable register for transferring data to Geometry Processor.

It is visible on the Geometry Processor stream interface as status 1 and it can also be
written to via the Register Out bus interface.

rev. 1.03 08.03.00

��

GDWDBRXW UHJLVWHU���� RIIVHW����K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

GDWDBRXW

GDWDBRXW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

data_out 31:0 Data transferring from Geometry Processor

The data_out register is PCI readable register for transferring data from Geometry
Processor and it can be written to via the register bus out interface.

������ *HRPHWU\�3URFHVVRU�LQVWUXFWLRQ�FRGH�LQWHUIDFH

The instruction code for the Geometry Processor resides originally in the card memory.
The code size is 214 = 16384 = 16 kwords and the word size is 32 bits. Since the card
memory is 64 bits wide, the code size there is 8 kwords. The 32-bit instructions are
packed in little-endian order, i.e. the word at address with LSB=0 is at the LSB part of the
64-bit word.

$GGUHVV�#�FDUG ,QVWUXFWLRQ�DGGUHVVHV
CODEBASE+8191 16383 16382

. . .

. . .

. . .
CODEBASE+1 3 2
CODEBASE 1 0

64 31 32 0

The program memory is cached in the instruction cache which is a 4-way set associative
cache with four 128-word blocks. There is currently no other way than jumping through 4
banks to flush the cache. The user should be careful when setting the CODEBASE register.

NOTE! The cache is not coherent with the program memory on card.

The recommended way of setting the CODEBASE is as follows:
1) set the gp_reset bit
2) write the CODEBASE register
3) reset the gp_reset bit

This causes the instruction cache to start in the initial state, and all the Geometry
Processor registers to be reset, however the data memories retain their values.

See also the chapter Instruction Execution on page 54.

rev. 1.03 08.03.00

���

������ *HRPHWU\�3URFHVVRU�6WUHDP�,�2�LQWHUIDFH

�������� 6WUHDP�,�2
The Stream I/O is controlled by two pointer registers: RDADDR and WRADDR, which are
write-only registers. Writing to these registers sets the corresponding card memory 64 -bit
ZRUG address where the next stream operation will access data. These registers are
internally self incrementing. The address 0 is VSHFLDO for reading the stream. It causes the
stream fetches to fetch data from values supplied through the PCI interface. Also in the
address 0 case the�UHDG address pointer register is�QRW self incrementing.

The stream data to be read is stored into a stream fetch register which is a 64-bit register.
The value of this registers remains constant until the next time the Stream Read
instruction (RD_STRM) sets the fetch stream bit (see FS bit on page 91). The stream will
have the new data ready for reading at the next instruction. You can have at most every
second instruction fetching the stream. The stream fetch register is visible through the
Stream Read instruction. The fetch register can be read in various formats. The general
view is illustrated below:

63 0
7 6 5 4 3 2 1 0 byte (8 bits)
3 2 1 0 short (16 bits)

1 0 int (32 bits)
I 24b 0 misc

The numeric formats can use either signed or unsigned integers or signed fixed point
numeric formats. The special values are considered to be unsigned except for the floating
point numbers.

'HF 1XPHULF 6SHFLDO
� NOP NOP
� 24b status 1
� int1 status 0
� int0
� short3
� short2
� short1
� short0
� byte7 8-bit mult by 16 (I)
� byte6 8-bit mult by 8 (I)
�� byte5 8-bit mult by 4 (I)
�� byte4 8-bit mult by 2 (I)
�� byte3 float conv → integer (bits 63-32)
�� byte2 float conv → integer (bits 31-0)
�� byte1 float conv → fixed (bits 63-32)
�� byte0 float conv → fixed (bits 31-0)

The stream is written through two Geometry Processor special registers: STREAM(HI)
and STREAM(LO). These Stream registers can be written multiple times, and new data
overrides the old one. The data is sent to the stream only when the WS bit of the Stream
Write instruction is set to 1.

rev. 1.03 08.03.00

���

�������� 'LUHFW�VWUHDP�GDWD
In order to transfer data from the PCI bus to the Geometry Processor, the VS25203B
contains a FIFO buffer, with room for 16 data words, each 64 bits wide. This buffer is
read by the Geometry Processor by using the Stream Read mechanism and by targeting
the reads to the stream address 0. Stream address mechanism also does not auto increment
when the reads are done to the address 0, this means that after the read address has been
changed to 0 all the following reads will be done from the FIFO until an explicit read
address change is done.

The data is written to the FIFO by writing it to the register range 224-255. It does not
matter which addresses in this range are used (except for the following even/odd
restriction), in any case the data is added to the next position in the FIFO. As the stream
consists of 64-bit words, two register writes are needed to generate one stream word. The
less significant 32 bits of the word should be written to an even register address and the
most significant 32 bits should be written to an odd register address. The less significant
32 bits of the 64-bit word should be written first then the most significant 32 bits. A range
of register addresses is used (instead of single address) so that efficient PCI burst writes
can be used when adding multiple data words to the FIFO.

In addition to the PCI writes the FIFO can be filled by using the bus mastering
mechanism, for further information see chapter PCI Bus starting on page 18.

The FIFO reads are controlled with the basic Stream Read mechanism. This means that
the Geometry Processor will stall if it tries to read from an empty FIFO.

There is no similar hardware protection against writing too much data to the FIFO, instead
the status of the FIFO is monitored, and this information can be used to control either the
software writing to the FIFO or to control the bus master command stream which is filling
the FIFO. The FIFO status monitoring is based on two register fields: stream_ref
which gives the reference value for how many items should be in the FIFO and
stream0_flag which is set to 1 if the FIFO contains more than stream_ref
elements and 0 otherwise. The stream0_flag is available for the Geometry Processor
in register 194 (bit 6). It is also available in register 48, and can be used to control PCI bus
master jump and wait commands, see pages 21 and 23.

Because of internal pipelining the actual filling of the FIFO might be delayed relative to
the PCI bus write operation. In order to compensate this the stream0_flag in register
48 is set to 1 while the internal pipelines contain data. This can cause the
stream0_flag to be 1 unexpetedly, but the total effect is to protect the FIFO from
being overfilled because of the pipeline delays.

rev. 1.03 08.03.00

���

��� 3ULPLWLYH�3URFHVVRU

���� 2YHUYLHZ
The 96B93 Primitive Processor is responsible for converting primitives into individual
pixels, which are then sent to the Pixel Processor. The primitives can be rectangles,
triangles or lines, but in all cases they are described in the same way: The shape of the
primitive is specified using edges (edge0, edge1, edge2, pages from 116 to 119) and
the minimum and maximum Y-coordinates (registers y_init, y_end, page 123), and
the contents by giving coefficients for equations that specify the different properties of the
pixels inside the edges. The edges are always straight lines, but the pixel properties can be
interpolated with either linear interpolation or with perspective correction.

The Primitive Processor handles complete primitives so that there is no need to split them
into more simple constructs (such as trapezoids). This makes the initialization process
both simpler and faster. A primitive is initialized by loading all the necessary values into
the registers of the Primitive Processor. When the last register (y_end, maximum Y-
coordinate, page 123) is loaded, the rasterization process begins. Because the registers are
double buffered, it is possible to start the loading of the next primitive at the same time as
the previous one is being rasterized. These registers also preserve their values when the
triangle is rasterized. It is therefore unnecessary to reload values which do not change
between consecutive triangles.

The Primitive Processor operates in the screen coordinate space; it produces the screen
coordinates, z-depth, and up to eight perspective corrected interpolated values for each
pixel. Of the eight interpolated values, four have an accuracy of eight bits and are thus
suitable for color and transparency values (RGBT, pages from 106 to 109). The other four
values have twelve bits of accuracy and are suitable to be used as texture coordinates
(ATU/ATV and BTU/BTV, pages from 110 to 113).

Texture coordinates are unsigned 12-bit quantities. The hardware does not handle
negative texture coordinates. The Primitive Processor also includes some texture address
component manipulation (grid_reg)

%DVLF�)RUPXODV
The following formulas describe the edges of a primitive:

E0 = (y × (edge0_dy × 8)) + (x× (edge0_dx × 8)) + edge0_init
E1 = (y × (edge1_dy × 8)) + (x× (edge1_dx × 8)) + edge1_init
E2 = (y × (edge2_dy × 8)) + (x× (edge2_dx × 8)) + edge2_init

where:
x = amount of horizontal pixels, relative to x_init.
y = amount of vertical pixels, relative to y_init.
Edge deltas dx and dy signify the change of the edge function within the distance
of one VXESL[HO unit (one eighth of a pixel). Therefore calculation must be done
in subpixel units.
Edge0-edge2 are edge interpolators from pages 117 to 119.
See also the (GJH�2UGHULQJ section on page 116.

rev. 1.03 08.03.00

���

Edge functions are referred with indices from edge_order register, page 116. All the
following statements have to be true, for a pixel to be inside a primitive:

()
()
()
()

H OH IW

H OH IW

H U LJ K W

H U LJ K W

_

_

_

_

1 0

2 0

1 0

2 0

≥

≥

>

>
e0, e1 and e2 functions give positive or negative results. Positive means that the pixel is
inside a primitive, negative means outside, respectively. Note that for the left edges, zero
means inside a primitive.

The following formulas are calculated per pixel to perform perspective correction.
Next four are for colors and transparency:

() ()
() ()[]

5
[U G[\ U G\ U LQLW

[S G[\ S G\ S LQLW
=

× + × +

× + × + ×

_ _ _

_ _ _
1

28

() ()
() ()[]

*
[J G[\ J G\ J LQLW

[S G[\ S G\ S LQLW
=

× + × +

× + × + ×

_ _ _

_ _ _
1

28

() ()
() ()[]

%
[E G[\ E G\ E LQLW

[S G[\ S G\ S LQLW
=

× + × +

× + × + ×

_ _ _

_ _ _
1

28

() ()
() ()[]

7
[W G[\ W G\ W LQLW

[S G[\ S G\ S LQLW
=

× + × +

× + × + ×

_ _ _

_ _ _
1

28

and the next four are for A and B texture interpolators; note the coefficient
1

212
- this is

because of the 12-bit result.

() ()
() ()[]

DWX
[DWX G[\ DWX G\ DWX LQLW

[S G[\ S G\ S LQLW
=

× + × +

× + × + ×

_ _ _

_ _ _
1

212

() ()
() ()[]

DWY
[DWY G[\ DWY G\ DWY LQLW

[S G[\ S G\ S LQLW
=

× + × +

× + × + ×

_ _ _

_ _ _
1

212

() ()
() ()[]

EWX
[EWX G[\ EWX G\ EWX LQLW

[S G[\ S G\ S LQLW
=

× + × +

× + × + ×

_ _ _

_ _ _
1

212

() ()
() ()[]

EWY
[EWY G[\ EWY G\ EWY LQLW

[S G[\ S G\ S LQLW
=

× + × +

× + × + ×

_ _ _

_ _ _
1

212

rev. 1.03 08.03.00

���

[= amount of horizontal pixels, relative to [BLQLW.
\ = amount of vertical pixels, relative to \BLQLW.
SBG[, SBG\ and SBLQLW registers described in page 122.

Note that G[and G\ specify the change of the proper value within the distance of one pixel
and [and \ are also pixel coordinates.

All in all: the primitive is defined with three edge functions and with the height of the
primitive, (\BHQG�±�\BLQLW)� All the pixels that are within the vertical bounds and have a
non-negative value for left edge functions or a positive value for right edge functions are
considered to be inside the primitive.

\BLQLW

\BHQG

3ULPLWLYH�WR�
EH�UDVWHUL]HG

The�edge_order register specifies the left and right edges. Tetragons can be rasterized
by using y_init and y_end and two edge functions; lines are just narrow tetragons.
Note that y_end must always be specified even if the edges define the lower end of a
primitive. Generally y_end should be the first scanline that is not any more drawn.

The Primitive Processor itself does not use the properties in any way. It just performs the
calculations described, and the properties finally have effect in the Pixel Processor where
they are used to define the final color for the pixel in question. This means that the
properties (such as depth) need not be the real values, but can instead be something
completely different, if this is used to achieve special effects in the pixel pipeline.

rev. 1.03 08.03.00

���

���� 3ULPLWLYH�3URFHVVRU�5HJLVWHUV
4GIKUVGT�CFFTGUU 1HHUGV� 4GIKUVGT�PCOG

�� 0100h FUBLQLW
�� 0104h FUBG\
�� 0108h FUBG[
�� 010Ch FJBLQLW
�� 0110h FJBG\
�� 0114h FJBG[
�� 0118h FEBLQLW
�� 011Ch FEBG\
�� 0120h FEBG[
�� 0124h FWBLQLW
�� 0128h FWBG\
�� 012Ch FWBG[
�� 0130h DWXBLQLW
�� 0134h DWXBG\
�� 0138h DWXBG[
�� 013Ch DWYBLQLW
�� 0140h DWYBG\
�� 0144h DWYBG[
�� 0148h EWXBLQLW
�� 014Ch EWXBG\
�� 0150h EWXBG[
�� 0154h EWYBLQLW
�� 0158h EWYBG\
�� 015Ch EWYBG[
�� 0160h]BVKU
�� 0164h]BLQLW
�� 0168h]BG\
�� 016Ch]BG[
�� 0170h HGJHBRUGHU
�� 0174h HGJH�BLQLW
�� 0178h HGJH�BG[
�� 017Ch HGJH�BG\
�� 0180h HGJH�BLQLW
�� 0184h HGJH�BG[
�� 0188h HGJH�BG\
�� 018Ch HGJH�BLQLW
��� 0190h HGJH�BG[
��� 0194h HGJH�BG\
��� 0198h JULGBUHJ
��� 019Ch SBLQLW
��� 01A0h SBG\
��� 01A4h SBG[
��� 01A8h [BLQLW
��� 01ACh \BLQLW
��� 01B0h \BHQG
��� 01B4h UDVWHUBH[W

Note that _dx and _dy register ordering for edges differs from other interpolators.

rev. 1.03 08.03.00

���

������ 5HG�,QWHUSRODWRU

The red interpolator (CR – color red) has three registers describing the values needed by
the Primitive Processor. The cr_init value specifies the initial value of the red
interpolator in the Primitive Processor. cr_dy specifies the increment which is added to
the red value interpolator, when the Primitive Processor steps one pixel in Y-direction.
cr_dy specifies the increment which is added to the red value interpolator, when the
Primitive Processor steps one pixel in X-direction.

ETAKPKV TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

ETAKPKV
ETAKPKV

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FUBLQLW ���� ,QLWLDO�YDOXH�IRU�WKH�UHG�LQWHUSRODWRU

ETAF[TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

ETAF[
ETAF[

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FUBG\ ���� 5HG�GHOWD�ZLWKLQ�RQH�YHUWLFDO�SL[HO

ETAFZ TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

ETAFZ
ETAFZ

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FUBG[���� 5HG�GHOWD�ZLWKLQ�RQH�KRUL]RQWDO�SL[HO

rev. 1.03 08.03.00

���

������ *UHHQ�,QWHUSRODWRU

The green interpolator (CG – color green) is similar to the red interpolator (CR) in all
ways, except for the property being interpolated. The green interpolator uses three
registers: cg_init, cg_dy and cg_dx.

EIAKPKV TGIKUVGT��� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

EIAKPKV
EIAKPKV

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FJBLQLW ���� ,QLWLDO�YDOXH�IRU�WKH�JUHHQ�LQWHUSRODWRU

EIAF[TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

EIAF[
EIAF[

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FJBG\ ���� *UHHQ�GHOWD�ZLWKLQ�RQH�YHUWLFDO�SL[HO

EIAFZ TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

EIAFZ
EIAFZ

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FJBG[���� *UHHQ�GHOWD�ZLWKLQ�RQH�KRUL]RQWDO�SL[HO

rev. 1.03 08.03.00

���

������ %OXH�,QWHUSRODWRU

The blue interpolator (CB – color blue) is similar to the red interpolator (CR) in all ways,
except for the property being interpolated. The blue interpolator uses three registers:
cb_init, cb_dy and cb_dx.

EDAKPKV TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

EDAKPKV
EDAKPKV

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FEBLQLW ���� ,QLWLDO�YDOXH�IRU�WKH�EOXH�LQWHUSRODWRU

EDAF[TGIKUVGT��� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

EDAF[
EDAF[

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FEBG\ ���� %OXH��GHOWD�ZLWKLQ�RQH�YHUWLFDO�SL[HO

EDAFZ TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

EDAFZ
EDAFZ

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FEBG[���� %OXH�GHOWD�ZLWKLQ�RQH�KRUL]RQWDO�SL[HO

rev. 1.03 08.03.00

���

������ 7UDQVSDUHQF\�,QWHUSRODWRU

The transparency interpolator (CT – color transparency) is similar to the red interpolator
(CR) in all ways, except for the property being interpolated. The transparency interpolator
uses three registers: ct_init, ct_dy and ct_dx.

EVAKPKV TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

EVAKPKV
EVAKPKV

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FWBLQLW ���� ,QLWLDO�YDOXH�IRU�WUDQVSDUHQF\�LQWHUSRODWRU

EVAF[TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

EVAF[
EVAF[

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FWBG\ ���� 7UDQVSDUHQF\�GHOWD�ZLWKLQ�RQH�YHUWLFDO�SL[HO

EVAFZ TGIKUVGT��� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

EVAFZ
EVAFZ

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FWBG[���� 7UDQVSDUHQF\�GHOWD�ZLWKLQ�RQH�KRUL]RQWDO�SL[HO

rev. 1.03 08.03.00

���

������ $�7H[WXUH�8�,QWHUSRODWRU��$78�

The ATU interpolator is similar to the red interpolator (CR) in all ways, except for the
property being interpolated. Even though the size of the output is different, the
initialization process is the same, because a different scale factor is used in the perspective
division. ATU interpolator uses three registers: atu_init, atu_dy and atu_dx.

CVWAKPKV TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

CVWAKPKV
CVWAKPKV

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
DWXBLQLW ���� ,QLWLDO�YDOXH�IRU�$�WH[WXUH�8�LQWHUSRODWRU

CVWAF[TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

CVWAF[
CVWAF[

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
DWXBG\ ���� $�WH[WXUH�8�GHOWD�ZLWKLQ�RQH�YHUWLFDO�SL[HO

CVWAFZ TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

CVWAFZ
CVWAFZ

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
DWXBG[���� $�WH[WXUH�8�GHOWD�ZLWKLQ�RQH�KRUL]RQWDO�SL[HO

rev. 1.03 08.03.00

���

������ $�7H[WXUH�9�,QWHUSRODWRU��$79�

The ATV interpolator is similar to the red interpolator (CR) in all ways, except for the
property being interpolated. Even though the size of the output is different, the
initialization is the same, because a different scale factor is used in the perspective
division. ATV interpolator uses three registers: atv_init, atv_dy and atv_dx.

CVXAKPKV TGIKUVGT��� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

CVXAKPKV
CVXAKPKV

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
DWYBLQLW ���� ,QLWLDO�YDOXH�IRU�$�WH[WXUH�9�LQWHUSRODWRU

CVXAF[TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

CVXAF[
CVXAF[

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
DWYBG\ ���� $�WH[WXUH�9�GHOWD�ZLWKLQ�RQH�YHUWLFDO�SL[HO

CVXAFZ TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

CVXAFZ
CVXAFZ

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
DWYBG[���� $�WH[WXUH�9�GHOWD�ZLWKLQ�RQH�KRUL]RQWDO�SL[HO

rev. 1.03 08.03.00

���

������ %�7H[WXUH�8�,QWHUSRODWRU��%78�

The BTU interpolator is similar to the red interpolator (CR) in all ways, except for the
property being interpolated. Even though the size of the output is different, the
initialization is the same, because a different scale factor is used in the perspective
division. BTU interpolator uses three registers: btu_init, btu_dy and btu_dx.

DVWAKPKV TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

DVWAKPKV
DVWAKPKV

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
EWXBLQLW ���� ,QLWLDO�YDOXH�IRU�%�WH[WXUH�8�LQWHUSRODWRU

DVWAF[TGIKUVGT��� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

DVWAF[
DVWAF[

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
EWXBG\ ���� %�WH[WXUH�8�GHOWD�ZLWKLQ�RQH�YHUWLFDO�SL[HO

DVWAFZ TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

DVWAFZ
DVWAFZ

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
EWXBG[���� %�WH[WXUH�8�GHOWD�ZLWKLQ�RQH�KRUL]RQWDO�SL[HO

rev. 1.03 08.03.00

���

������ %�7H[WXUH�9�,QWHUSRODWRU��%79�

The BTV interpolator is similar to the red interpolator (CR) in all ways, except for the
property being interpolated. Even though the size of the output is different, the
initialization is the same, because a different scale factor is used in the perspective
division. Btv interpolator uses three registers: btv_init, btv_dy and btv_dx.

DVXAKPKV TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

DVXAKPKV
DVXAKPKV

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
EWYBLQLW ���� ,QLWLDO��YDOXH�IRU�%�WH[WXUH�9�LQWHUSRODWRU

DVXAF[TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

DVXAF[
DVXAF[

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
EWYBG\ ���� %�WH[WXUH�9�GHOWD�ZLWKLQ�RQH�YHUWLFDO�SL[HO

DVXAFZ TGIKUVGT��� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

DVXAFZ
DVXAFZ

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
EWYBG[���� %�WH[WXUH�9�GHOWD�ZLWKLQ�RQH�KRUL]RQWDO�SL[HO

rev. 1.03 08.03.00

���

������ =�6FDOH�)DFWRU

\AUJT TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

\AUJT
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
]BVKU ��� 6FDOLQJ�IDFWRU�IRU�]�GHSWK�FDOFXODWLRQV

The z_shr register specifies the amount of bits the Z interpolator is shifted to the right
for Z-Buffering. Since the output Z property is only 24 bits, it is possible to gain extra
accuracy to the interpolation by using a z_shr of 3. If the z_shr is dynamically
calculated, even better accuracy is possible.

Maximum shift value is 24.

As z_init (register 89) is a 32-bit register, we can write to it a very accurate value of Z.
z_shr is similar to SUBS in texture space. It is possible to compute dynamically which
of the three corners of a triangle has the largest value (nearest), and use more fixed point
bits to represent the Z value. As a result, we can choose the fixed point precision
dynamically per triangle if we specify the number of bits to right-shift in order to get the
actual Z value for Z buffering. Basically, we should OR every Z coordinate together and
find the highest value "1" bit of the result. For example, if it is 26, we should multiply the
vertex Z values by 16 and use 4 in the z_shr register to get the actual Z -value.

rev. 1.03 08.03.00

���

������� =�,QWHUSRODWRU

VS25203 uses "perspective correct" Z-buffer; i.e. using 1/Z values to perform Z buffering.
The Z interpolator has three registers describing the depth value of a pixel needed by the
Primitive Processor. z_init value specifies the initial value of the Z interpolator in the
Primitive Processor. z_dy�specifies the increment which is added to the Z value
interpolator, when the Primitive Processor steps one pixel in Y-direction. z_dx specifies
the increment which is added to the Z value interpolator, when the Primitive Processor
steps one pixel in X-direction.

\AKPKV TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

\AKPKV
\AKPKV

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
]BLQLW ���� ,QLWLDO�YDOXH��IRU�WKH�=�GHSWK�UHJLVWHU

\AF[TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

\AF[
\AF[

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
]BG\ ���� =�GHSWK�GHOWD�ZLWKLQ�RQH�YHUWLFDO�SL[HO

\AFZ TGIKUVGT��� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

\AFZ
\AFZ

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
]BG[���� =�GHSWK�GHOWD�ZLWKLQ�RQH�KRUL]RQWDO�SL[HO

rev. 1.03 08.03.00

���

������� (GJH�2UGHULQJ

HGJHBRUGHU UHJLVWHU��� RIIVHW�����K

)RUPDW 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ULJKWB� ULJKWB� OHIWB� OHIWB�

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)LHOGV)LHOG %LWV 'HVFULSWLRQ

right_2 7:6 Second right edge slot (edge index)
right_1 5:4 First right edge slot (edge index)
left_2 3:2 Second left edge slot (edge index)

left_1 1:0 First left edge slot (edge index)

ULJKWB�
Specifies which of the edges is used as the second right edge of the primitive.
ULJKWB�
Specifies which of the edges is used as the first right edge of the primitive.
OHIWB�
Specifies which of the edges is used as the second left edge of the primitive.
OHIWB�
Specifies which of the edges is used as the first left edge of the primitive.

The�edge_order register is used to specify which of the edges of a primitive are on the
left side, and which on the right side. The Primitive Processor supports three edges in
total, so one side uses two edges, and the other side uses the remaining one. The bitcode
of the latter edge needs to be duplicated when writing it to appropriate fields; any field
may not be empty. If a tetragon is to be drawn, two fields have to be duplicated. Upper
and lower edges are defined with the registers y_init� and y_end��page 123. The value
in left1, left2, right1 and right2 is a 2-bit number that specifies the index of the
edge that belongs to the given slot. Value 0 means that the edge is described with registers
edge0_init, edge0_dx, edge0_dy, and similarly with the other values. The
number must be in the range of 0-2.(edge0, edge1, edge2 interpolators on pages 117-
119.)
See also page 102.

([DPSOHV

Contents of fields:

5,*+7B� 5,*+7B� /()7B� /()7B�

0 0 0 1 1 0 1 0

Contents of fields:

5,*+7B� 5,*+7B� /()7B� /()7B�
0 1 0 1 0 0 0 0

E0

E1
E2

Primitive

E0

Y_END

Y_INIT

E1

rev. 1.03 08.03.00

���

������� (GJH��,QWHUSRODWRU

Primitive is formed with three edge interpolators. Edge0 interpolator is used to describe
the 0th edge of primitive. edge0_init provides the initial value of edge interpolator 0.
edge0_dy is added to the edge interpolator 0 value, when the Primitive Processor steps
one pixel to the down. edge0_dx is added to the 0th edge interpolator value, when the
Primitive Processor steps one pixel to right. Due to subpixel resolution _dx and _dy
values are multiplied by eight during interpolation.

GFIG�AKPKV TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

GFIG�AKPKV
GFIG�AKPKV

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
HGJH�BLQLW ���� ,QLWLDO�YDOXH�IRU�HGJH�

GFIG�AFZ TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

GFIG�AFZ
GFIG�AFZ

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
HGJH�BG[���� (GJH��GHOWD�ZLWKLQ�RQH�KRUL]RQWDO�SL[HO

GFIG�AF[TGIKUVGT��� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

GFIG�AF[
GFIG�AF[

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
HGJH�BG\ ���� (GJH��GHOWD�ZLWKLQ�RQH�YHUWLFDO�SL[HO

rev. 1.03 08.03.00

���

������� (GJH��,QWHUSRODWRU

The Edge1 interpolator is similar to Edge0 interpolator in all ways, except for the number
of the edge it controls. Edge1 interpolator uses three registers: edge1_init,
edge1_dx and edge1_dy.

GFIG�AKPKV TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

GFIG�AKPKV
GFIG�AKPKV

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
HGJH�BLQLW ���� ,QLWLDO�YDOXH�IRU�HGJH�

GFIG�AFZ TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

GFIG�AFZ
GFIG�AFZ

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
HGJH�BG[���� (GJH��GHOWD�ZLWKLQ�RQH�KRUL]RQWDO�SL[HO

GFIG�AF[TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

GFIG�AF[
GFIG�AF[

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
HGJH�BG\ ���� (GJH��GHOWD�ZLWKLQ�RQH�YHUWLFDO�SL[HO

rev. 1.03 08.03.00

���

������� (GJH��,QWHUSRODWRU

The Edge2 interpolator is similar to Edge0 interpolator in all ways, except for the number
of the edge it controls. Edge2 interpolator uses three registers: edge2_init,
edge2_dx and edge2_dy

GFIG�AKPKV TGIKUVGT��� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

GFIG�AKPKV
GFIG�AKPKV

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
HGJH�BLQLW ���� ,QLWLDO�YDOXH�IRU�HGJH�

GFIG�AFZ TGIKUVGT���� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

GFIG�AFZ
GFIG�AFZ

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
HGJH�BG[���� (GJH��GHOWD�ZLWKLQ�RQH�KRUL]RQWDO�SL[HO

GFIG�AF[TGIKUVGT���� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

GFIG�AF[
GFIG�AF[

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
HGJH�BG\ ���� (GJH��GHOWD�ZLWKLQ�RQH�YHUWLFDO�SL[HO

rev. 1.03 08.03.00

���

������� *ULG�5HJLVWHU

ITKFATGI TGIKUVGT���� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

DS DPX DPW CS CPX CPW
ER I�� I�� I�� I�� TJKI

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
UKLJ ��� 5HQGHULQJ�VFUHHQ�KHLJKW���
J�� � JULG�PDVN���
J�� � JULG�PDVN���
J�� �� JULG�PDVN���
J�� �� JULG�PDVN���
FS �� FRQVWDQWBSHUVSHFWLYH
DQX �� $QX
DQY �� $QY
DT �� $�WH[WXUH�TXDG�ORRS
EQX �� %QX
EQY �� %QY
ET �� %�WH[WXUH�TXDG�ORRS

J����J����J����J��
g00 g10

g01 g11

Primitive Processor uses 2 x 2 grid mask to enable or disable pixel visibility. When the
field is set to one, the corresponding bit in Primitive Processor is disabled and vice versa.
If adjacent fields are set to one, then the Primitive Processor ignores the processing of the
corresponding horizontal line, (pairs g00,g10 and g01,g11). This doubles rasterizing
speed, and is especially good for doing fast visibility checks using bit 14 in register 48 on
page 39.

J��
Grid mask 11. Skips pixels with odd x and y coordinates. Notice that grid skip is
especially effective if complete horizontal lines are skipped, otherwise rasterization
proceeds at normal speed.
J��
Grid mask 10. Skips pixels with odd x and even y coordinates.
J��
Grid mask 01. Skips pixels with even x and odd y coordinates.
J��
Grid mask 00. Skips pixels with even x and y coordinates.

Grid mask works according to the following:

if (grid_mask[x and 1, y and 1]==1)
then kill_pixel

rev. 1.03 08.03.00

���

It is used, for example, to perform simple motion blur by enabling only one of the four
pixels to be drawn every frame, and the bit is changed randomly. This gives the effect of
having partial appearance of all four consecutive frames (a simple form of motion blur).

�

�

�

�

�

�

�� �� ���

����

����

����

����

����

����

����

����

��

����

����

����

������

�
�
�
�
�
�

+RUL]RQWDO�SL[HOV

9

H

U
W
L
F
D

O
�
S

L
[

H

O
V

��

Primitive Processor tiles the whole screen with grid mask, like the diagram on above.

FS
Constant_perspective. If the cp = 1 then the perspective correction is constant for R, G, B
and T interpolators. If cp = 0 then the perspective correction is performed by using P
interpolator, refer to page 122.

DQX�DQY
A_not_Umsb; A_not_Vmsb.
If anu = 0, the msb of the A texture interpolator U coordinate is inverted. If anv = 0,
the msb of the A texture interpolator V coordinate is inverted.
DT
A texture quad loop. Multiplies by four the texture coordinate values for the A texture. If
this bit is set to one, loop range is quadruplicated with two step bitwise left shift. The
downside of using quad looping is that the two resultant LSB bits are zero which means
that only every fourth texel of a texture map can be sampled into the final output. This
artifact is visible if a texture is looked at very closely, or if the texture contains some
easily recognizable patterns, like text.

EQX�EQY
B_not_Umsb; B_not_Vmsb.
If bnu = 0, the msb of the B texture interpolator U coordinate is inverted. If bnv = 0,
the msb of the B texture interpolator V coordinate is inverted.
ET
B texture quad loop. Multiplies by four the texture coordinate values for the B texture. If
this bit is set to one, loop range is quadruplicated with a two step binary left shift.
UKLJ
Rendering screen height (in number of pixels) divided by 32. It is the height of the
rendering area as multiples of 32-pixel blocks.

rev. 1.03 08.03.00

���

������� 3�,QWHUSRODWRU

When linear interpolation is desired, the P should be initialized to a constant value
(normally 7FFFFFFFh for maximum accuracy). For more information on linear and
perspective initializations, refer to the cr_init and z_init registers. The P
interpolator uses three registers: p_init, p_dy and p_dx.

RAKPKV TGIKUVGT���� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

RAKPKV
RAKPKV

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
SBLQLW ���� ,QLWLDO�YDOXH�IRU�WKH�3�LQWHUSRODWRU

RAF[TGIKUVGT���� QHHUGV���#�J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

RAF[
RAF[

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
SBG\ ���� 3�GHOWD�ZLWKLQ�RQH�YHUWLFDO�SL[HO

RAFZ TGIKUVGT���� QHHUGV���#�J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

RAFZ
RAFZ

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
SBG[���� 3�GHOWD�ZLWKLQ�RQH�KRUL]RQWDO�SL[HO

rev. 1.03 08.03.00

���

������� 6WDUW�(QG�&RRUGLQDWHV

These registers specify the point from which the rasterization starts, and at the same time
define the y extents for the primitive.

ZAKPKV TGIKUVGT���� QHHUGV���#�J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

ZAKPKV
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
[BLQLW ���� ,QLWLDO�[�FRRUGLQDWH�RI�WKH�UDVWHUL]DWLRQ�SURFHVV

This register is used for describing the starting point of the primitive to be rasterized.
Optionally the register should contain the X coordinate of the leftmost visible pixel of the
primitive on the row specified by y_init.

[AKPKV TGIKUVGT���� QHHUGV���#%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

[AKPKV
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
\BLQLW ���� ,QLWLDO�\�FRRUGLQDWH�RI�WKH�UDVWHUL]DWLRQ�SURFHVV

The y_init register is used for describing the starting point of the primitive to be
rasterized. It is the initial y coordinate where the triangle rasterization starts. The register
should contain the Y coordinate of the first screen row that should be rasterized. Normally
this is the row containing the first visible pixel of the primitive, but it is also possible to
use larger Y value and in this way skip the topmost part of the primitive. The actual area
covered by the triangle depends on the values of the x_init and y_init registers and
on the edge parameters.

[AGPF TGIKUVGT���� QHHUGV���$�J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

[AGPF
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
\BHQG ���� %RWWRP�URZ�RI�WKH�SULPLWLYH

This register gives the maximum Y coordinate of the primitive. It is the first row that is
not any more drawn. Writing the y_end signals the Primitive Processor that all the other

rev. 1.03 08.03.00

���

registers are set and it should start processing a new triangle. This means that the y_end
should be the last register written during the initialization of the primitive.

������� UDVWHUBH[W�5HJLVWHU

TCUVGTAGZV TGIKUVGT���� QHHUGV���$�J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

TUV
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
UVW � 6RIW�UHVHW�IRU�SULPLWLYH�SURFHVVRU

UDVWHUBH[W (rasterize extra triangle) enables a soft reset. When 1 is written to this register,
the Primitive Processor performs a soft reset, aborts the current triangle and starts the
rasterization of the next triangle (if any).

rev. 1.03 08.03.00

���

��� 3L[HO�3URFHVVRU

���� 2YHUYLHZ
The Pixel Processor is responsible for calculating the final color for all pixels in a
primitive. The color is generated by executing a shading program, which is written by the
user (or invoked through the device driver). It is executed for each pixel, and combines
data from registers, pixel properties in the Primitive Processor FIFO, texture maps and
finally the old color in the frame buffer. The shading program is located in code memory
of the Pixel Processor (see also Register Map on page 13). Code memory can store up to
32 commands, with many separate shading programs. It is possible to change the shading
program for each primitive if needed by determining a new start address or by loading a
completely new program to the code memory.

Pixel Processor must be initialized before starting rendering.

The pixel color for the primitive is formed from the color of the primitive surface and
from the lighting of the environment. These are described by using registers, pixel
properties and texture maps. The maps can be indexed color or true-color (TRGB, where
T is most significant byte and B is least significant byte), and can be filtered with bilinear
and trilinear filtering regardless of the mode. It is also possible to use two simultaneous
textures so that one describes the surface and the other contains information about the
lighting, for example, for shadows or highlights.

All these data can be combined by using logic operations and blending in a way controlled
by the shading program. Finally, the pixel color can be combined with the old color of the
pixel in order to create transparent surfaces or other effects. All these operations are
carried out with full true-color accuracy, and the final result can be stored in 32-bit true-
color, or 16 bit hi-color format. Dithering is also possible for better color quality.

rev. 1.03 08.03.00

���

����)XQFWLRQDO�%ORFN�'LDJUDP

&RQWURO�����ELW

%����ELW

$����ELW

5HVXOW����ELW

7(;785(�

)(7&+

&2()���� /2*,&

3$/(77(��

5$0

%/(1'

7(;785(�

),/7(5

&CVC�HTQO�

2TKOKVKXG�

2TQEGUUQT

&CVC�HTQO�#�CPF�

$�6GZVWTGU

703����

),)2

&CVC�VQ�CPF�

HTQO�(TCOG�

$WHHGT

',7+(5

&CVC�HTQO�

4GIKUVGT�DWU

The Pixel Processor consists of four central buses connected to the different functional
units as seen above. The A and B buses are the main parameters of the operation, the
Control bus is a modifier bus, and the Result bus is used to store the result into one of the
three temporary registers (TMP1-3) or send to the screen. The main parameters can be
colors (TRGB, 8 bits per component where T is the most significant byte and B is the
least significant byte), or texture coordinates (UV, 12 bits per component). They can be
read from temporary registers, coefficient registers or from the input FIFO fields. The
modifier bus width is 8 bits, and the usage depends on the function. Every shading
instruction specifies the functional unit to use, and the connections for each bus.

A central feature of the Pixel Processor is the availability of temporary registers. This
makes it possible to construct complex shading operations.
The blend unit creates an intermediate color between the A and B colors according to a
blending factor in the Control bus. It is also possible to alter the alive-flag of the pixel,
based on the resulting transparency of the operation. The alteration can also be based on
transparency dither, so that stipple-transparency is possible.

Texture fetch reads a texture color from the external graphics memory, given the texture
coordinates in A-bus. The texture data in memory can use 4 to 32 bits per pixel, and the
texture unit expands the storage format into full 32 bits. The 4 and 8 bit data are routed
through a palette for this purpose. If MIP-mapping is used, the texture fetch operation also
modifies the texture coordinate based on the active MIP-level, read from the control bus.
The texture coordinates can be looped or clamped.

rev. 1.03 08.03.00

���

Texture filtering works together with the texture fetch unit. It fetches multiple texture
colors which are combined according to the fractional texture coordinates for bilinear
interpolation. Trilinear interpolation can be created with two texture filtering operations
and one blend operation. When bilin filtering is used, 4 low order bits of the texture
coordinates are used as the fractional bits.

The logic unit provides all possible logic operations between the two colors, as well as
arithmetic operations and minimum and maximum operations.

������ %XV�$GGUHVV�7DEOH

Coefficient registers (COEF0-3) are read-only registers for the Pixel Processor; see
registers 1 to 4, pages 141 and 142. TMP1-3 registers can be used to store temporary
results in a shading program. T signifies transparency, R red, G green, B blue, ATU A
texture U coordinate and ATV A texture V coordinate and BTU B texture U coordinate
and BTV B texture V coordinate.

$GGUHVV $�EXV %�EXV FRQWURO�EXV 'HVWLQDWLRQ

0 COEF0 (TRGB) COEF0 (TRGB) COEF0 (T) Frame buffer

1 COEF1 (TRGB) COEF1 (TRGB) COEF1 (T) TMP1

2 COEF2 (TRGB) COEF2 (TRGB) COEF2 (T) TMP2

3 COEF3 (TRGB) COEF3 (TRGB) COEF3 (T) TMP3

4 FIFO (TRGB) FIFO (TRGB) FIFO (T) -

5 TMP1 (TRGB) TMP1 (TRGB) TMP1 (T) -

6 TMP2 (TRGB) TMP2 (TRGB) TMP2 (T) -

7 TMP3 (TRGB) TMP3 (TRGB) TMP3 (T) -

8 FIFO ATU/ATV UHVHUYHG FIFO ATV (b.0-7) -

9 FIFO BTU/BTV FIFO BTU/BTV FIFO BTV (b.0-7) -

10 FIFO Z UHVHUYHG TMP2 (R) -

11 UHVHUYHG UHVHUYHG TMP2 (G) -

12 UHVHUYHG UHVHUYHG TMP2 (B) -

13 UHVHUYHG UHVHUYHG FIFO (R) -

14 UHVHUYHG UHVHUYHG FIFO (G) -

15 ZERO UHVHUYHG FIFO (B) -

Note that the coefficient registers can only be used by either A bus or B bus at the same
time. Furthermore, A bus has higher priority than B bus.

Note also that for FIFO ATV and FIFO BTV on the C bus, there is a possibility of shifting
the data as it is being transferred to the C bus. Bit selection is controlled by param -field
bit 18 (see color_op or logic)

rev. 1.03 08.03.00

���

������),)2

3URSHUW\ :LGWK 1RUPDO�XVDJH

CR 8 bits Red
CG 8 bits Green
CB 8 bits Blue
CT 8 bits Transparency, Blending factor, MIP-map level
ATU 12 bits First texture X-coordinate

ATV 12 bits First texture Y-coordinate
BTU 12 bits Second texture X-coordinate
BTV 12 bits Second texture Y-coordinate
Z 24 bits Depth value used for Z-buffering

Red, Green Blue as well as texture coordinates can be used as diffuse, specular and fog
intesity.

������ &RHIILFLHQW�5HJLVWHUV

3URSHUW\ :LGWK 1RUPDO�XVDJH

COEF0 32 bits Coefficient 0 (T:8, R:8, G:8, B:8)

COEF1 32 bits Coefficient 1 (T:8, R:8, G:8, B:8)

COEF2 32 bits Coefficient 2 (T:8, R:8, G:8, B:8)

COEF3 32 bits Coefficient 3 (T:8, R:8, G:8, B:8)

������ 7HPSRUDU\�5HJLVWHUV

3URSHUW\ :LGWK 1RUPDO�XVDJH

TMP1 32 bits Temp 1 register (T:8, R:8, G:8, B:8 or U:12, V:12)

TMP2 32 bits Temp 2 register (T:8, R:8, G:8, B:8 or U:12, V:12)

TMP3 32 bits Temp 3 register (T:8, R:8, G:8, B:8 or U:12, V:12)

These registers can be used to store temporary results in a shading program.

rev. 1.03 08.03.00

���

���� 6KDGLQJ�3URJUDP�)RUPDW
�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

(QTOCV GPF RRWAQRGT RCTCO
RCTCO CACFFT DACFFT EACFFT FGUV
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
GHVW ��� 'HVWLQDWLRQ�DGGUHVV
FBDGGU ��� &�EXV�DGGUHVV
EBDGGU ��� %�EXV�DGGUHVV
DBDGGU ����� $�EXV�DGGUHVV
SDUDP ����� 3DUDPHWHU�ILHOG
SSXBRSHU ����� 3L[HO�SURFHVVRU�RSHUDWLRQ
HQG �� 6KDGLQJ�SURJUDP�HQG

The program instruction contains seven different fields. Desired values are loaded to the
appropriate fields, depending on the type of command (ppu_oper).
1) HQG determines the last command of the shading program.
2) SSXBRSHU determines the executed command:

0 reserved
1 color_op
2 stipple_blend
3 logic_op
4 cread
6 zread
7 zwrite
8 textfetch
9 textfetch_modulate
10 bilin
11 tlogic
12 palette

1�%� opcode 5 is reserved.

3) SDUDP contains parameter, depending on command
4) DBDGGU determines first source bus
5) EBDGGU determines second source bus
6) FBDGGU determines control bus
7) GHVW determines destination address

The Pixel Processor processes every pixel of the primitive, which is generated by the
Primitive Processor. Shading program start address is loaded to register 14, page 149.
Program run terminates when the value of the end field is one (maximum of 32
commands). If the shading program contains ppu_oper which may kill pixels (zread,
stipple_blend or tlogic), then program execution may terminate and the Pixel
Processor begins to process a new pixel of the primitive.

rev. 1.03 08.03.00

���

����[����

���[���

��

�� �

���

���

If MIP-mapping is used, the maximum width of the largest texture map is 512. Thus, the
series of textures for a MIP-map fits into a combined texture width of 1024. For 128 ×
128 texture, a 256 × 128 surface must be created. Smaller level of detail maps must be
stored to the right of the highest level of detail map. Example of such a case is above.
Note that the grey area is lost due to memory layout.

If MIP-map is enabled (am�and bm�bits in registers 6 and 8), the Pixel Processor uses four
MSB bits from the C (Control) bus to determine what MIP level to use.

rev. 1.03 08.03.00

���

���� 6KDGLQJ�,QVWUXFWLRQV

FRORUBRS 6KDGLQJ�,QVWUXFWLRQV ����������RSFRGH��

'HVFULSWLRQ� Handles A and B bus colors with assistance of C (control) bus.
Result.red = A.red + ((B.red - A.red) × C) / 256
Result.green = A.green + ((B.green - A.green) × C) / 256
Result.blue = A.blue + ((B.blue - A.blue) × C) / 256
Result.transp = A.transp + ((B.transp - A.transp) × (C and F0h)) / 256

6SHFLDO� Note that various parameter combinations are possible; see the example below with
param=12. The transparency output is computed by only using the 4 topmost bits from
the C bus.

3DUDPHWHUV� 0 00000 If C bus = 4 (FIFO) then use the whole transparency value for
blend operation.

1 00001 If C bus = 4 (FIFO) then use 4 LSBs of the transparency for
blend operation.

2 00010 For transparency component, force blend factor to 0.
4 00100 For color (RGB components), force blend factor to 0.
8 01000 Swap A and C (control) bus values.
16 10000 If C bus address is 8 or 9, value on C bus is shifted left 4 bits

(0000xxxx -> xxxx0000).

,QSXWV� A and B buses contain colors and C bus contains the blend factor.

2XWSXWV� Frame buffer, TMP1, TMP2, or TMP3

([DPSOH�
end ppu_oper param a_addr b_addr c_addr dest

1 1 12 0 4 1 0

Performs COEF0 × FIFO_RGB, and stores the result to the frame buffer. With parameter
0, the Result = A + ((B – A) × C) / 256. In the above example, parameters configure the
blending unit to zero C bus and then swap A and C buses which makes Result = 0 + ((B –
0) × A) / 256 which is equal to (A × B) / 256. In other words, bit 2 and bit 3 of the
parameter field are set (param = 8 + 4 = 12), and this generates A × B because:

Bit 2: forces color blend factor (C bus) to zero
Bit 3: swaps A bus and C bus values

The original formula of A + ((B - A) × C)) / 256 therefore becomes:
0 + ((B - 0) × A)) / 256 = (B × A) / 256

Consider the case of swapping the A bus value with C bus value by setting bit 3 of the
color_op parameter. Note that C bus only carries 8 bits and A bus carries 32 bits. As
color_op is performed component-wise (in 8-bit fields), each of the 8-bit fields in A
bus is swapped with C bus separately. For instance, if A = 12345678h and C = ABh, the
blue component will have the value:

ABh + ((B.blue - ABh) × 78h) / 256
and green would have:

ABh + ((B.green - ABh) × 56h) / 256
Note that for transparency:
Result.transp = ABh + ((B.transp – ABh) × 10h) / 256.

rev. 1.03 08.03.00

���

VWLSSOHBEOHQG 6KDGLQJ�,QVWUXFWLRQV ����������RSFRGH��

'HVFULSWLRQ� Normal color operation command with some additional functions; see Special.

6SHFLDO� If rtr field in frame_mode register is set to one, then Pixel Processor kills the pixels
after comparing stipple_blend result to the internal transparency dither mask. If tsk
field in ppu_mode register is set, pixel is killed depending on transparency result. Note
that various parameter combinations are possible.

3DUDPHWHUV� 0 00000 If C bus = 4 (FIFO) then use the whole transparency value for
blend operation.

1 00001 If C bus = 4 (FIFO) then use 4 LSBs of the transparency for
blend operation.

2 00010 For transparency component, force blend factor to 0.
4 00100 For color (RGB components), force blend factor to 0.
8 01000 Swap A and C (control) bus values.
16 10000 Value on C bus is shifted left 4 bits (0000xxxx -> xxxx0000).

,QSXWV� A and B buses contain colors and C bus contains the blend factor.

2XWSXWV� TMP1, TMP2, or TMP3. With dest value of 0 result is not written to the frame buffer, but
possible pixel kills are proceeded.

([DPSOH�
end ppu_oper param a_addr b_addr c_addr dest

1 2 0 4 0 0 1

Read values from FIFO and COEF0, blends and stores the values after comparing them to
the internal dither mask.

See also: rtr field (bit 0) in frame_mode (13) register, page 148.

The internal transparency dither mask is hardcoded into stipple_blend; it cannot be
modified. It is completely different from the dither mask defined in the dither (10)
register.
The decision for the Pixel Processor to kill a pixel is made according to the following:

Note that this dither mask comparison is not tied to the stencil bits in the ppu_mode (12)
register in any way.

if (raster_transparency ==1 and
((pixel.transparency shr 4) >
((dithy shr 1 and 1) +
 ((dithy shr 1 and 1) xor (dithx shr 1 and 1)) shl 1+
 (dithy and 1) shl 2+
 ((dithy and 1) xor (dithx and 1)) shl 3)
)

)
then kill_pixel;

dithx = ScreenPixelX and 3
dithy = ScreenPixelY and 3

rev. 1.03 08.03.00

���

The transparency skip parameter in ppu_mode register (12) has effect only with the
stipple_blend instruction. The effect is:

This is to kill only the almost fully transparent pixels if stipple is not wanted.

ORJLFBRS 6KDGLQJ�,QVWUXFWLRQV ����������RSFRGH��

'HVFULSWLRQ� logic_op command performs various logic operations between the A and B bus colors.

6SHFLDO� Transparency value is taken from C bus, instead of A bus. If osat field in frame_mode
register is one, the result values are clamped between 0-255, otherwise values are looping.

3DUDPHWHUV� 0 00000 A and B
1 00001 A and not B
2 00010 not A and B
3 00011 not A and not B
4 00100 A xor B
5 00101 reserved
6 00110 reserved
7 00111 reserved
9 01001 max(A,B) (finds higher color value of A and B)
12 01100 A + B
13 01101 A - B
16 10000 not (A and B)
17 10001 not (A and not B)
18 10010 not (not A and B)
19 10011 not (not A and not B)
20 10100 not (A xor B)
21 10101 reserved
22 10110 reserved
23 10111 reserved
25 11001 min(A,B) (finds lower color value of A and B)
28 11100 not(A + B)
29 11101 not(A - B)

,QSXWV� A and B buses; A operand for transparency logic operation is taken from C bus.

2XWSXWV� Frame buffer, TMP1, TMP2, or TMP3

([DPSOH�
end ppu_oper param a_addr b_addr c_addr dest

0 8 0 8 0 4 2
1 3 4 4 6 6 0

Performs color XOR operation with A texture and FIFO TRGB. Sends result to the frame
buffer.

6HH�DOVR: frame_mode (13) register osat field (bit 1), page 148.

if ((transparency_skip==1) and
 ((pixel.transparency shr 4)==15))
then kill_pixel

rev. 1.03 08.03.00

���

Note that max(), min(), addition and subtraction are all component-wise operations.
For example:

max(11223344h, 44332211h) = 44333344h
min(11223344h, 44332211h) = 11222211h
add(11223344h, 44332211h) = 55555555h
sub(11223344h, 44332211h) = 00001133h

For the last subtraction example, we have assumed that the overflow check osat (bit 1)
in frame_mode (13) register is set to one, so that the negative results are clamped to
zero.

FUHDG 6KDGLQJ�,QVWUXFWLRQV ����������RSFRGH��

'HVFULSWLRQ� Reads color value from frame buffer and stores it to the temporary register.

6SHFLDO� If cm field in register 13 is set to 1, transparency value will also be read.

There is a Z-buffer mode where the Z value contains one bit of fast clear value. This bit is
used to determine on a per-pixel basis whether the pixel is from the current frame or from
the earlier frame. According to this information, zread first checks if the fast clear bit is
different from the fast clear current value (fcv) bit in the frame_mode (13) register. If
it is different, it means that the Z value is not from this frame and should be taken as zero
("fast cleared"). Same has to apply to cread as we do not want to get the color from the
earlier frame, but get black instead. The fcv bit is changed every frame, and for fast clear
to work properly, EVERY pixel on the screen has to be drawn every frame. Also, if fce
in register 13 is set to 1 and the fcv comparison fails during zread, then return the
black value.

3DUDPHWHUV� none

,QSXWV� Color value from the frame buffer.

2XWSXWV� 32-bit word to any temporary register TMP1-3.

([DPSOH�
end ppu_oper param a_addr b_addr c_addr dest

1 4 0 0 0 0 1

Reads color value from the frame buffer and stores this value to TMP1.

6HH�DOVR� Register 13, bits 3 and 8, page 148.

rev. 1.03 08.03.00

���

]UHDG 6KDGLQJ�,QVWUXFWLRQV ����������RSFRGH��

'HVFULSWLRQ� Kills pixels according to stencil mask, depth compare and fast clear.

6SHFLDO�

If Z equal compare (register 13, bit 2)==1 then Z equal compare will also kill pixels that
have the same Z value as the one in the Z buffer.

3DUDPHWHUV� none

,QSXWV� Bits [23:0] of A bus for z-value, even for z buffer modes less than 24 bits.

2XWSXWV� If the pixel is visible, value on A bus is written according to destination parameter. Valid
destinations are TMP1-3.

([DPSOH�
end ppu_oper param a_addr b_addr c_addr dest

1 6 0 10 0 0 0

Compare FIFO Z (addr value 10) with z value from z-buffer, and skip the rest of the
shading program if pixel is not visible.

For more information on fast clear, please refer to the cread command above. Stencil
mask is very similar to fast clear, except that it can kill a pixel even if the pixel is visible
after a Z compare operation. For example in a typical flight simulator game, if the pixels
of the cockpit has stencil turned on, it is not necessary to redraw the cockpit in every
frame, as it remains untouched from frame to frame.

If (ppu_mode_red.stencil == 1 and
 fetched_stencil != ppu_mode_reg.sok)
then kill_pixel

If (frame_mode.fce == 1 and
 fetched.fast_clear != frame_mode.fcv)
then kill_pixel

rev. 1.03 08.03.00

���

]ZULWH 6KDGLQJ�,QVWUXFWLRQV ����������RSFRGH��

'HVFULSWLRQ� Stores the z, stencil and fcv values of a pixel, depending on the z-buffer mode (i.e. bits in
frame_mode (13) register).

The fast clear bit is generated by reading from the fcv bit (bit 4 of register 13). And the
stencil bit is generated from the old stencil value in the Z-buffer modified with the current
stencil operation (bits 9-10 of register 12).
Typically the a_addr for zwrite is the Z-FIFO; in this case, the stencil values are
written from internal registers. If the stencil operations nop or invert are used then the
Pixel Processor code must also include zread in order to initialize these registers
properly. If some other source is used, the stencil and fastclear bits come from that source
directly. If the source is one of the TMP registers and the zread operation is used to
initialize the TMP register, then the register will have correct stencil etc values deposited
by the zread operation; although it is possible to change the values with other operations
between zread and zwrite.

6SHFLDO� -

3DUDPHWHUV� none

,QSXWV� A bus, the z value to be written.

2XWSXWV� none

([DPSOH�
end ppu_oper param a_addr b_addr c_addr dest

1 7 0 10 0 0 0

Write FIFO Z to the z-buffer.

6HH�DOVR� frame_mode (13) register, bits 3, and 5-7; page 148.

rev. 1.03 08.03.00

���

WH[WIHWFK 6KDGLQJ�,QVWUXFWLRQV ����������RSFRGH��

'HVFULSWLRQ� Makes a texture fecth.

6SHFLDO� U and V are organized on the bus as follows:
U[11:0] = A bus [23:12]
V[11:4] = A bus [7:0]
V[3:0] = A bus [11:8]
Note that the MIP-map level is taken from the upper 4 bits of C bus. Refer to bilin
instruction (opcode 10).

When a/bm bit (A/B texture MIP-map enable) in a/btex_conf2 register (6 or 8) is
one, the MIP level can be determined by reading it from the C bus of the Pixel Processor.
Even when MIP enable is 0, it is still possible to use the mip_add bit in the instruction to
force one level of MIP-map.

3DUDPHWHUV� 1 00001 Add one bit to V coordinate.
2 00010 Add one bit to U coordinate.
4 00100 Add one to the MIP-map level.
8 01000 Select A/B texture settings. A=0, B=1.

,QSXWV� Bits [23:0] of A bus. Bits [7:4] of C bus

2XWSXWV� 32-bit TRGB color that can be stored to any temporary register TMP1-3.

([DPSOH�
end ppu_oper param a_addr b_addr c_addr dest

0 8 0 8 0 4 1
1 1 0 5 4 0 0

Blends A texture with FIFO TRGB, with the amount in C bus.
Sends the result to the frame buffer.

6HH�DOVR� atex_conf1 (5) and atex_conf2 (6) registers, pages 142 and 143, and
btex_conf1 (7) and btex_conf2 (8) registers, page 144.

rev. 1.03 08.03.00

���

WH[WIHWFKBPRGXODWH 6KDGLQJ�,QVWUXFWLRQV ����������RSFRGH��

'HVFULSWLRQ� Performs a texture fetch based on the A bus values; uses the fetched 16-bit value as
follows:

Bits 4:0 contain the signed horizontal modulation vector.
Bits 9:5 contain the signed vertical modulation vector.
Bits 15:10 contain the color index that can be used later to address the palette.

Modulates texture components on the B bus.

As a result operation writes modulated component and color index on result bus:
Res 31:26 color index (5:0)
Res 25:24 color index (5:3)
Res 23:12 modulated U component(11:0)
Res 11:4 modulated V component(7:0)
Res 3:0 modulated V cmponent(11:8)

6SHFLDO� modulation (11) register contains the horizontal and vertical modulation coefficients.

3DUDPHWHUV� 1 00001 Add one bit to V coordinate.
2 00010 Add one bit to U coordinate.
4 00100 Add one to the MIP-map level.
8 01000 Select A/B texture settings. A=0, B=1.

,QSXWV� A bus, containing the U and V coordinates for the source texture.
B bus, containing the U and V coordinates to be modulated.

2XWSXWV� TMP1, TMP2, or TMP3.

([DPSOH�
end ppu_oper param a_addr b_addr c_addr dest

0 9 0 8 9 0 1
0 8 0 5 0 0 2
1 4 0 6 4 0 0

Modulates BTU and BTV coordinates with the vector fetched with ATU/TV components
texture, and the modulation vector from modulation (11) register. Write the result to
the TMP1. Makes texture fetch using modulated component from TMP1 and stores TRGB
value to TMP2. Combines color values from TMP2 and FIFO to the frame buffer.

6HH�DOVR� modulation (11) register, page 147.

rev. 1.03 08.03.00

���

ELOLQ 6KDGLQJ�,QVWUXFWLRQV ����������RSFRGH���

'HVFULSWLRQ� Performs bilinear interpoation inside 2 × 2 texture pixel matrix that is relative to U and V
coordinates on A bus. Bilin works the same way as textfetch except that it
performs bilinear filtering for the texel.

6SHFLDO� Four LSB bits of U and V are used to perform blending. Note that the MIP-map level is
taken from the upper 4 bits of C bus. Also, the bits used for blending are the next four
which are not used in texture address calculation; which bits these are depends on SUBS
and MIP parameters.
When am bit (A/B texture MIP-map enable) in a/btex_conf2 register (6 or 8) is one,
the MIP level can be determined by reading it from the C bus of the Pixel Processor. Even
when MIP enable is 0, it is still possible to use the mip_add bit in the instruction to force
one level of MIP-map.

3DUDPHWHUV� 1 0001 add one bit to V-coordinate (not used)
2 0010 add one bit to U-coordinate (not used)
4 0100 add one to MIP level
8 1000 select a/b texture settings

,QSXWV� Bits [23:0] of A bus.

2XWSXWV� Interpolated 32-bit TRGB color, ready to be stored to temporary register TMP 1-3.

([DPSOH�
end ppu_oper param a_addr b_addr c_addr dest

0 10 0 8 0 0 1
1 4 0 1 0 0 0

Fetch bilinear filtered texels, and store to TMP1. Writes bilin result from TMP1 to the
frame buffer.

When using MIP-mapping, the MIP-map is selected with the upper 4 bits of the value on
C bus.

7 6 5 4 3 2 1 0
m m m m n n n n

For example a C-bus value of 8 would select MIP-map 0 (the main texture) because the
m-bits are zero, and a C-bus value 22 (=16h) would select MIP-map 1, and so on. The
reason for using the upper and not lower bits to select the level is that the lower bits are
needed, for example, for trilinear blending between two MIP-map levels.

We consider here the popular method of trilinear filtering as an example. Note that
trilinear filtering concerns the bilinear texture fetch instruction only, and not the point-
sampled texture fetch instruction. When performing trilinear filtering, two texture fetches
are performed. The texture fetch instruction has a parameter that adds 1 to the MIP-map
level. For example, a C-bus value of 22 (16h) becomes 38 (16h + 10h =26h) and this
selects the next MIP-map. In practice, the Pixel Processor code would look like the
following:

; fetch first texture
end ppu_oper param a_addr b_addr c_addr dest

0 10 0 8 0 4 1

rev. 1.03 08.03.00

���

; fetch next MIP-map level
end ppu_oper param a_addr b_addr c_addr dest

0 10 4 8 0 4 2

; blend the two textures using the lower 4 bits of MIP-map interpolator, and output to
frame ; buffer

end ppu_oper param a_addr b_addr c_addr dest

1 1 1 5 6 4 0

Note that the combination of different shading instructions such as the examples above
can implement very versatile and advanced 3D shading and filtering algorithms.

WORJLF 6KDGLQJ�,QVWUXFWLRQV ����������RSFRGH���

'HVFULSWLRQ� Same as logic, opcode 3, with the following exeptions:

6SHFLDO� The normal logic operation is proceed and if the TRGB result is zero then pixel is killed.

2XWSXWV� TMP1, TMP2, or TMP3. With dest value of 0 result is not written to the frame buffer, but
possible pixel kills are proceeded.

SDOHWWH 6KDGLQJ�,QVWUXFWLRQV ����������RSFRGH���

'HVFULSWLRQ� Reads the color from the internal palette RAM using the C bus as index.

6SHFLDO� Palette mask and palette base values are specified in palette_base (15) register. This
instruction uses the same A/B palette parameters, and is not limited to the B texture
parameters. Result = palette[(C bus and b_palmask) or b_palbase)]

3DUDPHWHUV� 8 01000 Select A/B texture palettebase register A=0 B=1

,QSXWV� 8-bit index from C bus.

2XWSXWV� TMP1-3

([DPSOH�
end ppu_oper param a_addr b_addr c_addr dest

0 12 0 0 0 4 1
1 8 0 5 0 0 0

Read the color from the palette using FIFO transparency as index, and store the result to
TMP1.
Blends this palette with COEF0 register and sends the results to the frame buffer.

6HH�DOVR� palette_base (15) register, page 149.

rev. 1.03 08.03.00

���

���� 3L[HO�3URFHVVRU�5HJLVWHUV

4GIKUVGT�CFFTGUU 1HHUGV� 4GIKUVGT�PCOG
� 0004h FRHIBUHJ�
� 0008h FRHIBUHJ�
� 000Ch FRHIBUHJ�
� 0010h FRHIBUHJ�
� 0014h DWH[BFRQI�
� 0018h DWH[BFRQI�
� 001Ch EWH[BFRQI�
� 0020h EWH[BFRQI�
� 0024h EDVHBDGGU
�� 0028h GLWKHU
�� 002Ch PRGXODWLRQ
�� 0030h SSXBPRGH
�� 0034h IUDPHBPRGH
�� 0038h SSXBFRGHBVWDUW
�� 003Ch SDOHWWHBEDVH

EQGHATGI� TGIKUVGT�� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

VTCPUR TGF
ITGGP DNWG

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
EOXH ��� &RHIILFLHQW���EOXH
JUHHQ ���� &RHIILFLHQW���JUHHQ
UHG ����� &RHIILFLHQW���UHG
WUDQVS ����� &RHIILFLHQW���WUDQVSDUHQF\

EQGHATGI� TGIKUVGT�� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

VTCPUR TGF
ITGGP DNWG

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
EOXH ��� &RHIILFLHQW���EOXH
JUHHQ ���� &RHIILFLHQW���JUHHQ
UHG ����� &RHIILFLHQW���UHG
WUDQVS ����� &RHIILFLHQW���WUDQVSDUHQF\

rev. 1.03 08.03.00

���

EQGHATGI� TGIKUVGT�� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

VTCPUR TGF
ITGGP DNWG

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
EOXH ��� &RHIILFLHQW���EOXH
JUHHQ ���� &RHIILFLHQW���JUHHQ
UHG ����� &RHIILFLHQW���UHG
WUDQVS ����� &RHIILFLHQW���WUDQVSDUHQF\

EQGHATGI� TGIKUVGT�� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

VTCPUR TGF
ITGGP DNWG

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
EOXH ��� &RHIILFLHQW���EOXH
JUHHQ ���� &RHIILFLHQW���JUHHQ
UHG ����� &RHIILFLHQW���UHG
WUDQVS ����� &RHIILFLHQW���WUDQVSDUHQF\

atex_conf1 register contains the base address for A texture, measured in units of 2048
bytes and texture height in memory in 32 pixel blocks.

CVGZAEQPH� TGIKUVGT�� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

COJKI
CDCUGD

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
DEDVHE ���� $�WH[WXUH�EDVH�DGGUHVV�LQ������E\WH�EORFNV
DPKLJ ����� $�WH[WXUH�KHLJKW�LQ����SL[HO�EORFNV

rev. 1.03 08.03.00

���

CVGZAEQPH� TGIKUVGT�� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

CUWDU C[N CZN CO CF COQFG
CRJKI CRYKF

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
DVXEV ����� $�WH[WXUH�VXE�SL[HOV
D\O �� D\ORRS
D[O �� D[ORRS
DP �� $�WH[WXUH�0,3�PDS�HQDEOH
DG �� $�WH[WXUH�GDWD�VDPH�RQ�ERWK�PHPRU\�EDQNV
DPRGH ����� $�WH[WXUH�PRGH
DSKLJ ���� $�WH[WXUH�KHLJKW�LQ�SL[HOV
DSZLG ��� $�WH[WXUH�ZLGWK�LQ�SL[HOV

DVXEV
A texture subpixel accuracy. Determines how many bits are reserved for subpixels; the
rest are for the actual pixels. For example 5bits for subpixels and 7bits for actual pixels
gives a total of 12bits.

D\O��D[O
Ayl controls AV component looping/clamping
Axl controls AU component looping/clamping
If texture looping is enabled ax / yl = 1 texture coordinate larger than the size of the
texture will be wrapped around.
If a coordinate is clamped ax / yl = 0 texture coordinate larger than the size of the texture
will be forced to zero, and the texture color fetched from this location will be used as a
result.

DP
A texture MIP-map enable. When am is one, the MIP level can be determined by reading
it from the C bus of the Pixel Processor. Even when MIP enable is 0, it is still possible to
use the mip_add bit in the instruction to force one level of MIP-map.

DG
A-texture double. Pixels are interleaved in memory banks; this bit enables both external
memory banks storing the same texels.

This dual bank mode is used to get faster access to texture through the two separate 32-bit
buses which take advantage of reducing the access latency at the 64-bit SDRAM
interface. If the ad bit is one and texture is uploaded so that the even and odd texels are
stored to both buses respectively, VS25203 can use faster accesses to fetch the texture
without the need for possible texel swapping inside the Pixel Processor. This feature,
together with the other more advanced features in VS25203, are quite complex to support
in current industry standard 3D APIs. They are used mainly in arcade and specialized
applications. A practical way to take advantage of this feature is to have texture fetches
twice as wide, where even and odd pixels are cloned horizontally.

rev. 1.03 08.03.00

���

DPRGH
A texture mode:
0000 8 bit index
0001 4 bit index
0100 RRRRRGGGGGGBBBBB
0101 TRRRRRGGGGGBBBBB
0110 TTTTRRRRGGGGBBBB
1000 TTTTTTTTRRRRRRRRGGGGGGGGBBBBBBBB
1001 AAAAAAAAVVVVVVVVYYYYYYYYUUUUUUUU
1010 YYYYYYYYVVVVVVVVYYYYYYYYUUUUUUUU
T signifies transparency, R red, G green and B blue, respectively.

DSZLG��DSKLJ
A texture pixel width; A texture pixel height. The following list contains calculated values
for different texture map sizes:
000 16
001 32
010 64
011 128
100 256
101 512
110 1024
111 2048
Seven is the maximum value for this field, which gives the maximum texture map size of
2048 times 2048 pixels.

DVGZAEQPH� TGIKUVGT�� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

DOJKI
DDCUGD

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
EEDVHE ���� %�WH[WXUH�EDVH�DGGUHVV�LQ������E\WH�EORFNV
EPKLJ ����� %�WH[WXUH�KHLJKW�LQ����SL[HO�EORFNV

See atex_conf1.

rev. 1.03 08.03.00

���

DVGZAEQPH� TGIKUVGT�� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

DUWDU D[N DZN DO DF DOQFG
DRJKI DRYKF

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
EVXEV ����� %�WH[WXUH�VXE�SL[HOV
E\O �� E\ORRS
E[O �� E[ORRS
EP �� %�WH[WXUH�0,3�PDS�HQDEOH
EG �� %�WH[WXUH�GDWD�VDPH�RQ�ERWK�PHPRU\�EDQNV
EPRGH ����� %�WH[WXUH�PRGH
ESKLJ ���� %�WH[WXUH�KHLJKW�LQ�SL[HOV
ESZLG ��� %�WH[WXUH�ZLGWK�LQ�SL[HOV

See atex_conf2.

DCUGACFFT TGIKUVGT�� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

\DCUGD
EDCUGD

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FEDVHE ����)UDPH�EXIIHU�EDVH�DGGUHVV�LQ������E\WH�EORFNV
]EDVHE ����� =�EXIIHU�EDVH�DGGUHVV�LQ������E\WH�EORFNV

EDVHBDGGU register contains the base address for Z-buffer and graphics memory.

rev. 1.03 08.03.00

���

FKVJGT TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

F� F� F�
F� F� F� F� F� F�
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
G� ��� 'LWKHU��
G� ��� 'LWKHU��
G� ��� 'LWKHU��
G� ���� 'LWKHU��
G� ����� 'LWKHU��
G� ����� 'LWKHU��
G� ����� 'LWKHU��
G� ����� 'LWKHU��

VS25203 uses a 4 × 4 ordered dither matrix. This register describes the dither mask; only
bits 0:23 are significant. Dither values of 0:7 are located in the dither mask as follows:

DITHER 0 DITHER 2 DITHER 4 DITHER 6
DITHER 1 DITHER 3 DITHER 5 DITHER 7
DITHER 4 DITHER 5 DITHER 0 DITHER 2
DITHER 6 DITHER 7 DITHER 1 DITHER 3

Dithering is enabled by default, where bit 4 (nd: no-dither bit) of ppu_mode (12)
register is reset to zero.

Dithering is controlled by software functions in the display driver. If zero mask values are
passed to the functions, dithering has no effect. The suggested mask value in VS25203 is
007E95A0h; this is a popular value in dithering literature, but most large random values
will have similar results.

The theory behind dithering is that noise is added to the pixel bits below a certain fixed
binary point and then the lower order bits are discarded. For example, in RGB 5:6:5 frame
buffer format, 3-bit values from the dither matrix are added to the 3:2:3 lower order bits of
the pixel value according to the pixel’s x and y coordinates. The pixel value then has its
3:2:3 lower order bits truncated before it is written back to the frame buffer. Note that the
green component has less bits since human vision requires more green resolution in the
pixel value. This is the reason for the use of shr bit (bit 5, shift-green-dither-value-right-
by-one field) of the ppu_mode (12) register to control a one-bit right shift of the dither
value before the value is added to the green component.

rev. 1.03 08.03.00

���

OQFWNCVKQP TGIKUVGT��� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

OQFX[OQFXZ
OQFJ[OQFJZ

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
PRGK[��� +RUL]RQWDO�;�PRGXODWLRQ�FRHIILFLHQW
PRGK\ ���� +RUL]RQWDO�<�PRGXODWLRQ�FRHIILFLHQW
PRGY[����� 9HUWLFDO�;�PRGXODWLRQ�FRHIILFLHQW
PRGY\ ����� 9HUWLFDO�<�PRGXODWLRQ�FRHIILFLHQW

This register describes coefficients used to rotate modulation vector which is stored in
texture map for the purpose of bump mapping. This register is only used with
textfetch_modulate command of the Pixel Processor, see page 138.

RRWAOQFG TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

UVAQRGT UQM U VUM UJT PF
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
QG � 1R�GLWKHU
VKU � 6KLIW�JUHHQ�GLWKHU�YDOXH�ULJKW�E\�RQH
WVN � 7UDQVSDUHQF\�VNLS
V � 6WHQFLO
VRN � 6WHQFLO�UHIHUHQFH�YDOXH
st_oper ���� 6WHQFLO�RSHUDWLRQ

QG
No dither; disables the internal dithering logic in VS25203.
VKU
Shift green dither value right by one. To make dithering work correctly in 16-bit frame
buffer mode where the green component has 6 bits, while the red and blue components
have only 5 bits.
VRN
Stencil reference value used in zread instruction

rev. 1.03 08.03.00

���

WVN
Transparency skip. It only has effect with the stipple_blend shading instruction
(opcode 2). The effect is:

This is to kill only the almost fully transparent pixels if stipple is not wanted.
V
Stencil. Enable(1)/disable(0) pixel kill by stencil in zread.
VWBRSHU
Stencil operation:
00 no operation
01 set stencil mask
10 clear stencil mask
11 invert stencil mask

HTCOGAOQFG TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

EO \O HEX HEG \GS QUCV TVT
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
UWU � 5DVWHU�WUDQVSDUHQF\
RVDW � 2YHUIORZ�VDWXUDWH
]HT � =�HTXDO�FRPSDUH
IFH �)DVW�FOHDU�HQDEOH
IFY �)DVW�FOHDU�FXUUHQW�YDOXH
]P ��� =�PHPRU\�PRGH
FP � &�PHPRU\�PRGH

UWU
Raster transparency; it has to be set to one for the stipple_blend command to do
stippling. Refer to the stipple_blend command for more details.
RVDW
Overflow saturate; when it is set it causes the possibly overflowing operations (dithering,
logic unit add/subtract) to saturate their results.
]HT
Z equal compare; if this bit is one, Zcompare will ALSO kill pixels that have exactly the
same Z value as the one in the Z buffer.
IFY
Fast clear current value; refers to the description of cread command (opcode 4).

if ((transparency_skip==1) and
 ((pixel.transparency shr 4)==15))
then kill_pixel

rev. 1.03 08.03.00

���

]P
Defines the z memory mode:
000 ZZZZZZZZZZZZZZZZο

001 ZZZZZZZZZZZZZZZFο

010 ZZZZZZZZZZZZZZFSο

011 000000FSZZZZZZZZZZZZZZZZZZZZZZZZο
Z signifies z-value, F is fast clear and S is stencil.
FP
Defines the color memory mode:
0 RRRRRGGGGGGBBBBBο

1 TTTTTTTTRRRRRRRRGGGGGGGGBBBBBBBBο
T signifies transparency, R red, G green and B blue, respectively.

RRWAEQFGAUVCTV TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

UVCTVACFFT
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
VWDUWBDGGU ��� 3L[HO�SURFHVVRU�FRGH�VWDUW�DGGUHVV

The start address of the shading program for the Pixel Processor unit (ppu) is stored in the
ppu_code_start register.

RCNGVVGADCUG TGIKUVGT��� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

DARCNOCUM DARCNDCUG
CARCNOCUM CARCNDCUG

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
DBSDOEDVH ��� $�WH[WXUH�SDOHWWH�LQGH[�EDVH
DBSDOPDVN ���� $�WH[WXUH�SDOHWWH�LQGH[�PDVN
EBSDOEDVH ����� %�WH[WXUH�SDOHWWH�LQGH[�EDVH
EBSDOPDVN ����� %�WH[WXUH�SDOHWWH�LQGH[�PDVN

SDOHWWHBEDVH register contains information used in indexing the internal palette memory
of VS25203. It uses the following formula:

Result = palette[(C_bus and palmask) or palbase]

See also palette command on page 140.

rev. 1.03 08.03.00

���

���� 3L[HO�3URFHVVRU�8QLW�0HPRU\�%ORFNV
The Pixel Processor contains a program memory containing 32 24-bit words. This
memory is mapped to the address range 128-159.
The Pixel Processor also contains memory for storing the color palette used in some of the
texture map modes. This memory is mapped to the address range 256-511.

���� 96B93�%XPS�0DSSLQJ�3URJUDPPLQJ�*XLGHOLQHV
The bump mapping modulation matrix is a 2D rotation matrix. It rotates the bump map
vectors so that the effect of rotating a triangle (while the environment map stays in the
same orientation) can be counteracted. The values in the two vectors inside the matrix are
signed 8-bit integers; and the two vectors should be in 90 degrees angle (i.e. mutually
orthogonal, with dot product value of zero):

The bumpiness effect of a bump map can be scaled by using smaller modulation values in
the matrix. Also, the bump map data loaded into VS25203 should be in X,Y signed delta
format (bits 0..4 for X, bits 5..9 for Y). Bump mapping is inherently slow due to random
accesses to texture. But the second (conventional diffuse) texture can be stored into the
bump map as a 6-bit paletted texture. The palette shading instruction (opcode 12) can then
be used to fetch the color that matches the palette.

For a 3D artist to generate a bump map which looks visually realistic, it is best to use a
grey scale map with white presenting high. Also, it works best if the map does not contain
regular patterns (like text, or logo) as the possible artifacts are more visible on maps like
these. One parameter to try while generating a bump map in Photoshop™ is the
smoothness (blur) parameter; by trying different versions of the map an artist can find a
map that looks best for the application.

The VS_VP bump mapping method always requires a light map to get the effect of a
bump surface. Bump + environment map and bump + diffuse map are both supported. The
difference between these two is in the way of calculating light map coordinates. In bump
+ environment map, the light map (environment map in this case) coordinates are
generated on the fly from the vertex normal vectors. That is why the environment seems
to reflect from the surface, and as we distort the environment map coordinates per pixel,
we get the effect of a bumpy surface. In bump + diffuse map, the light map coordinates
are static (e.g. in Id Software’s Quake™); i.e. the light map does not move or slide on the
surface.

It is possible to use the same VS_VP bump mapping method to make diffuse light maps
look bumpy, but the benefit of having two separate maps is not significant anymore as
these two maps could have been pre-rendered into a single normal texture map for actual
use.

Depending on the object, the VS_VP bump mapping modulation matrix works best if it is
the same matrix for the whole object. If a modulation matrix is chosen for each individual
triangle, we would get discontinuity at the triangle edges. The reason is that we cannot
interpolate the matrix over the triangle. The modulation matrix should contain the major
horizontal and vertical mapping angles of the bump map on the object. A simple example
is an object that has a bump map applied with plane mapping. In this case, the orientation
of the 2D plane that is used to access texture coordinates for the bump map should be put
into the modulation matrix, with a 90 degree angle between the horizontal and vertical
vectors.

rev. 1.03 08.03.00

���

Take the example of a car racing game with a car in a blue sky environment, if we intend
to have bumps on the racing car surface, the best way to do so is to create a bump texture
with the original texture combined to the same map (e.g. car number, stickers etc as a 6-
bit palette index). We then use this map to modulate the surrounding sky environment
map coordinates:

Atexture = Bump map
Btexture = Sky environment map

The following steps are then carried out through shading instructions for the Pixel
Processor:

1. textfetch_modulate a:Atexture, b:Btexture -> TMP1
Through this step, we will have bump mapped sky environment map color in TMP1. We
also have the 6-bit index (from the bump map) in TMP1_alpha arranged in the bit order of
54321054. This bit layout makes it easier to use TMP1_alpha, for example, to carry out
palette look-up or to use it as a blending factor.

2. textfetch a: TMP1 -> TMP1
This instruction fetches color information from texture memory using modulated texture
component from TMP1 writing the result to TMP1 for further use.

3. palette c:TMP1_alpha (address 5) -> TMP2
At this point we have the diffuse color of the surface in TMP2 and specular color in TMP1.
Next thing to do is to add these colors together (with saturation turned ON; register 13 bit
1).

4. logic_op 12 (a+b) a:TMP1, b:TMP2 -> screen
With the above three-instruction pixel code, the intended combined bump/environment
mapping effect is realized.

rev. 1.03 08.03.00

���

��� &ORFN�6\QWKHVLV�DQG�&RQWURO

���� 2YHUYLHZ
VS25203 contains two phase-locked-loop (PLL) frequency synthesizers. They generate
clock signals for the processor and for video. VS25203 uses an external crystal, which is
connected between the Osc_out and Osc_in pins. The frequency of the crystal is
14.3181818 MHz. Both synthesizers can be programmed separately for up to 200MHz.

���� 3URJUDPPLQJ
The frequency synthesized by each PLL is determined by the following equation:

() 26&FRHIU287
)

FRHIQ
FRHIP

) ×
×+
+=

22

2_

where:

QBFRHI��PBFRHI��UBFRHI� �clock coefficients
)26& = quartz crystal or external clock (MHz).

The quartz crystal frequency FOSC is 14.3181818 MHz. The integer values of n_coef,
m_coef and r_coef should be between the following values:

n_coef: 0-127 (0-32 recommended)
m_coef: 0-127
r_coef: 0-3

For the best clock stability, there are some guidelines for programming the on-chip
frequency synthesizer. The most stable operation for the PLL is achieved when the phase
detector frequency in the synthesizer is as high as possible. This condition requires that
the n_coef counter value is as small as possible. The next guideline is to have high VCO
(voltage controlled oscillator) frequency, preferably in the 150-300 MHz range. This
condition requires that the value r_coef is as large as possible.

Coefficients are defined in core_clk_cfg (16) register and video_clk_cfg (18)
register on pages 28 and 33. The following table contains examples for some Fout values.
Note that the actual frequency may vary slightly.

rev. 1.03 08.03.00

���

'HVLUHG�)UHTXHQF\ PBFRHI QBFRHI UBFRHI)
RXW���

�0+]�
25 125 7 3 25,2557
35 86 7 2 35,0000
45 111 7 2 44,9432
50 125 7 2 50,5114
65 107 4 2 65,0284
75 40 0 2 75,1705
85 117 8 1 85,1932
95 118 7 1 95,4545

105 115 6 1 104,7017
115 110 5 1 114,5455
125 120 5 1 124,7727
135 111 4 1 134,8295
145 119 4 1 144,3750
155 85 2 1 155,7102
165 113 3 1 164,6591
175 120 3 1 174,6818
185 101 2 1 184,3466
200 110 2 1 200,4545

&DXWLRQ: Unsuitable clock frequency parameters may cause permanent damage to the
device.

rev. 1.03 08.03.00

���

��� 9*$�&RUH

���� ,QWURGXFWLRQ

VS252 VGA Core is 100% IBM® VGA compatible, and has extensions for supporting
SVGA modes with higher refresh rates and larger screen dimensions. The VGA Core is
highly integrated circuit, taking full advantage of PCI and refresh logic providing
maximum bandwidth from bus to memory and from memory to DAC. Internally, the
VGA core is divided, as traditionally, into two components: host and video interfaces, see
Fiqure 8.1-1 below. Frame buffer, the on-board video memory, is shared with other units.
The host interface communicates with PCI Controller and takes care of memory writes,
reads and I/O mapped register access. The video interface is a complex state machine,
which carries the data flow from the memory to the DAC. The video interface operation
can be subdivided into alphanumeric and graphics modes.

Host Interface

Video Interface
(Refresh)

VGA Core

PCI Controller

DAC

Frame Buffer

)LJXUH��������9*$�&RUH�H[WHUQDO�LQWHUIDFHV.

As mentioned, VS252 VGA Core does not include just a VGA. It optimizes indexed
256-color modes in a way that allows the full potential of PCI bus to be harnessed.
Acceleration is provided for standard VGA mode 13h and VESA linear 256 color modes.

rev. 1.03 08.03.00

���

���� 9*$�0HPRU\�DQG�5HJLVWHU�0DSSLQJ

������ ,QWURGXFWLRQ

During system startup IBM compatible PC‘s memory is organized like in the Table 8.2.3-
1. VGA memory window is located at memory range A0000h-BFFFFh, BIOS ROM is
located in memory range C0000h-C7FFFh and registers are mapped in the I/O space
registers from 3B4h to 3Dah and into PCI aperture’s shadow area. Decoding of the I/O
and the memory addresses can be disabled from the PCI configuration space.

������ 9*$�5HJLVWHU�PDSSLQJ

VGA registers are mapped in I/O space locations from 3B4h to 3DAh. Table 8.2.2-1
describes the VGA register map. Location of CRTC00-CRTC45, FEATCTRL and
INPUTS1 registers are dependent of the MISCOUT register’s bit 0. When MISCOUT bit
0 is ‘1’, these registers are mapped into ports 3Dxh, otherwise into ports 3Bxh. Mapping
of the other registers is fixed. The I/O space decoding can be disabled by setting PCI
configuration space register 4 bit 0 to zero.

Accessing of VGA registers is not as straightforward as accessing the memory mapped
registers of the other units. CRTC, Graphics and Sequencer Registers are indexed
registers, which are accessed by writing register index into index port (for example
CRTCINDEX) and then writing the data into the data port (CRTCDATA). Writing an
indexed register can be done with two 8-bit operations or by a singe 16-bit write, where
the index is located in the low-byte and the data in the high byte. Reading an indexed
register must be done by first writing the index and then reading the data. CRTC registers
from 0 to 7 can be locked from writing by CRTC11 bit 7 (reading of them is still
possible). CRTC registers from 40 to 45 (extended registers) can be written only if PCI
apertures register 21 (Feature Register) bit 3 is ‘1’. All the other indexed registers can be
read and written all the time.

General Registers, MISCOUT, FEATCTRL, INPUTS0 and INPUTS1 are accessed
directly by reading and writing their corresponding I/O port. Input Status registers are
read only registers, while MISCOUT and FEATCTRL are read/write.

Attribute registers are accessed by first reading INPUTS1 register and then writing the
attribute register index into port 3C0h and then writing the data into 3C0h. If the bit 5 of
the index is not set, the refresh logic does not have access into attribute registers, and the
screen will be black. If the bit 5 of the index is set, the refresh can access the palette and
attribute registers all the time. Attribute register data can be read from the port 3C1h and
the index can be read from port 3C0h.

Color palette can be accessed by first writing the index into 3C8h and then writing red,
green and blue values sequentially into port 3C9h. The index of the color palette is
incremented after writing the blue component. Thus the whole 256-color palette can be
written by writing first the index and then writing all 768 color component values into
port 3C9h. The read operation is similar. The CPWADDR can be read, but the
CPRADDR can not. CPSTATE is read only port, and CPMASK can be directly read and
written. This is the basic operation of writing the 256-indexed color palette. It is not
possible to write only red and green components of the color palette register, but the
whole RGB value must be written before the actual palette register is updated.

rev. 1.03 08.03.00

���

VGA memory and I/O space can be accessed through PCI aperture. Since PCI apertures
are relocatable, VGA can be used without fixed I/O and memory ranges. Memory mapped
VGA registers, called shadow registers, are located in PCI apertures register space at
address 50h. This means, that each VGA register can be accessed like using the normal
VGA, but instead of making an I/O write/read to a port 3XXh, one makes a memory
write/read to address 50 + (3XXh-3C0h). For example, if one wants to write CRTC
register index, one makes a byte write to address 64h (50h + 3D4h-3C0h) in the memory
mapped register space. The value of Miscellaneous Output Register does not affect the
memory aperture register mapping. Otherwise, the behavior of the shadow registers is
similar to their behavior in the I/O space.

,�2�$''5(66 2))6(7 :5,7(�5(*,67(5 5($'�5(*,67(5
3B4 64h CRTCINDEX CRTCINDEX
3B5 65h CRTCDATA CRTCDATA
3B6
3B7
3B8
3B9
3BA 6Ah FEATCTRL INPUTS1
3BB
3BC
3BF
3C0 50h ATTRIDX ATTRIDX
3C1 51h ATTRDATA
3C2 52h MISCOUT INPUTS0
3C3
3C4 54h SEQINDEX SEQINDEX
3C5 55h SEQDATA SEQDATA
3C6 56h CPMASK CPMASK
3C7 57h CPRADDR CPSTATE
3C8 58h CPWADDR CPWADDR
3C9 59h CPDATA CPDATA
3CA 5Ah FEATCTRL
3CB
3CC 5Ch MISCOUT
3CD
3CE 5Eh GFXINDEX GFXINDEX
3CF 5Fh GFXDATA GFXDATA
3D0
3D1
3D2
3D3
3D4 64h CRTCINDEX CRTCINDEX
3D5 65h CRTCDATA CRTCDATA
3D6
3D7
3D8
3D9
3DA 6Ah FEATCTRL INPUTS1

7DEOH����������9*$�5HJLVWHU�0DSSLQJ.

rev. 1.03 08.03.00

���

������ 9*$�0HPRU\�0DSSLQJ

VGA memory is mapped in 80x86 real mode as described in the Table 8.2.3-1. The
alternative method for accessing the VGA memory is through the PCI memory apertures,
which provide direct access to the frame buffer. The physical address (bus address) of the
linear frame buffer can be obtained from the PCI configuration space register 4.

VGA memory space decoding is enabled at boot time, and can be disabled by setting PCI
configuration space register 21 bit 0 to zero. Possible maps are from A0000h to BFFFFh,
from A0000h to AFFFFh, from B0000h to B7FFFh and from B8000h to BFFFFh. The
map used is selected from GFX6 bits 2 to 3. When the whole 128kb memory window is
used, the addresses over B0000h are aliased to memory space starting at A0000h, unless
the bit 6 of CRTC41 is set. Writes outside the memory map are discarded by the PCI
interface. Writes through the VGA memory window can be disabled by MISCOUT
register’s bit 1.

When data is written through the VGA memory space, it is handled by the VGA host
interface. There are several host interface configurations, which determine the format in
which the data is actually written to the frame buffer. There are four different write modes
and two read modes combined with several control registers, for example plane and bit
masks that make the VGA host interface rather complex. The most important
configuration registers are Graphic Controller Registers and Sequencer Register 2 and 4.

In linear modes, VGA host interface is bypassed and data is written to memory without
modifications. This can be done either by enabling the VGA linear mode in the VGA
memory window, or by writing the data directly to the frame buffer through PCI
apertures. In the linear mode, each byte represents index to the 256-color palette. Linear
host interface is enabled by CRTC41 bit 3. Refresh logic can be also configured in linear
mode by setting refresh to standard VGA mode 12h byte addressing mode and enabling
64-bit sequencer model by setting CRTC41 bit 4 to ‘1’.

0HPRU\ ([SODQDWLRQ
FE0000- Shadow ROM BIOS
10000-FDFFFF Extended memory
F0000 Planar BIOS
E0000 Expansion BIOS and motherboard video BIOS
D8000 Voice Communication BIOS/LIM EMS page map

area
D0000 Network BIOS
CC000 LIM EMS page map area
C8000 Hard disk BIOS
C0000 9*$�%,26
A0000 9*$�0HPRU\�:LQGRZ
00600 System RAM
00400 BIOS Data Area
00000 Interrupt Vector Tables

7DEOH����������,%0�3&�0HPRU\�/D\RXW�GXULQJ�V\VWHP�VWDUWXS.

rev. 1.03 08.03.00

���

���� 9*$�6XEV\VWHP�&RQILJXUDWLRQ

VGA Subsystem can be enabled and disabled using PCI configuration space register 21,
which provides four bits to control the state of the VGA Core. See the Table 8.3-1 below.
The functionality and of these bits is described in table. The boot time configuration
corresponds the IBM VGA setup where extension registers are hidden and VGA decoding
is enabled.

Feature register bit 0 activates the VGA I/O and memory range decoding. At boot time the
VGA decoding is enabled by default. Feature register bit 1 selects between VGA and 3D
refresh. VGA refresh is used for 256 color or less output and 3D refresh is used for true-
and high-color output. Unless the bit 2 of the Feature register is set, the selection between
VGA and 3D refresh changes if these registers are written. Feature register bit 3 enables
writes to extended VGA registers. The extended registers (CRTC40-CRTC45) can be read
all the time.

ELW ([SODQDWLRQ 5HVHW
YDOXH

3 VGA extension enable
0 enables using of extended VGA registers
1 extension registers are also available

0

2 VGA refresh select lock
0 selection of refresh registers active
1 selection locked

0

1 VGA refresh select
0 3D video refresh registers used
1 VGA refresh registers used

Selects 3D/VGA video refresh control. This bit changes its state
automatically if VGA or 3D refresh registers are accesses, unless
the select lock (bit 2) is active

1

0 VGA decode enable
Activates the decoding of the standard VGA memory and IO
ranges.

1

7DEOH��������3&,�&RQILJXUDWLRQ�VSDFH�UHJLVWHU�����Feature�UHJLVWHU�

rev. 1.03 08.03.00

���

���� 9*$�&ORFN�&RQILJXUDWLRQ

������ ,QWURGXFWLRQ

VGA host and video clock is the same as system video and system core clock. The value
for the system core and video clocks can be calculated as:

&ORFN�&RQILJXUDWLRQ�5HJLVWHU &RHIILFLHQW
Bits 14-15 UBFRHI
Bits 7-13 PBFRHI
Bits 0-6 QBFRHI

() 26&FRHIU287
)

FRHIQ
FRHIP

) ×
×+
+=

22

2_

)26& is the frequency of external clock, usually 14.318MHz.

WARNING! Unsuitable clock parameters may cause permanent damage to the device.

������ +RVW�,QWHUIDFH

VGA host interface clock is same as system Core Clock. This is defined in PCI
configuration space register 16, Core Clock Config. See general clock programming
guidelines for programming this register.

������ 9LGHR�,QWHUIDFH

Video clock is derived from the system video clock, which is set from PCI configuration
space register 18. If VGA refresh is enabled, the system video clock can be set indirectly
by programming MISCOUT register. Writing this register with bit 3 as ‘0’, the system
video clock will be programmed to a new value. If bit 3 is set, the write into MISCOUT
does not affect video clock setting.

rev. 1.03 08.03.00

���

���� 9*$�,QWHUUXSW�*HQHUDWLRQ

VGA generates vertical retrace interrupts, if System Control Register bit 12 is set. The
vertical retrace interrupt must be cleared using VGA register CRTC11. See Table 8.5
below.

ref_reg ([SODQDWLRQ
VGA IRQ ena (bit:12) if this bit is set then the vga unit generated interrupt is

routed to the pci bus. An interrupt which is initiated by the
vga block must be reset using by the vga unit video_irq
(bit:11)

Video IRQ (bit:11) if this bit is set to one the circuit will generate an interrupt
request when the
video_y value reaches the video_y_ref value

video_y_ref (bits:10-0)
7DEOH�����6\VWHP�&RQWURO�5HJLVWHU�����ref_reg�

���� 9*$�5HJLVWHUV

������ *HQHUDO�5HJLVWHUV
/+5%176���/KUEGNNCPGQWU�1WVRWV�4GIKUVGT QHHUGV����%J�������J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%%J
9TKVG�#FFTGUU �%�J
+PFGZ �
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

852 *52 25 4 % '8&/ 2�+�1�$

(KGNFU (KGNF $KVU &GUETKRVKQP
963 � 9HUWLFDO�6\QF�3RODULW\
+63 � +RUL]RQWDO�6\QF�3RODULW\
36 � 3DJH�6HOHFW
5 � 5HVHUYHG
& ��� &ORFN6HOHFW
(9'0 � (QDEOH�9*$�'LVSOD\�0HPRU\
3�,�2�% � 3RUW�,�2�%DVH

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This registers is an important control register, which controls sync polarities, I/O
addressing, pixel clock settings and memory access. Write to this register programs the
Video Refresh clock, if the bit 3 of the value written is zero.

rev. 1.03 08.03.00

���

)LHOG�GHVFULSWLRQ�

9HUWLFDO�6\QF�3RODULW\
If set to zero (0), the vertical sync is a signal going from low to high (0 -> 1).
If set to one (1), the vertical sync is a signal going from high to low (1 -> 0).

+RUL]RQWDO�6\QF�3RODULW\
If set to zero (0), the horizontal sync is a signal going from low to high (0 -> 1).
If set to one (1), the horizontal sync is a signal going from high to low (1 -> 0).

For some VGA monitors following table indicates the vertical resolution used with
corresponding Horizontal and Vertical sync values:

96<1&�3RODULW\ +6<1&�3RODULW\ 9HUWLFDO�6L]H
0(+) 0(+) Reserved
0(+) 1(-) 400
1(-) 0(+) 350
1(-) 1(-) 480

3DJH�6HOHFW
If display memory configuration is in so called in odd/even mode, internally only odd or
even memory addresses are used. The selection between odd and even memory addresses
is done according to the value of Page Select bit.
If Page Select bit is set to ‘1’, only even memory locations are accessed in odd/even
modes.
If Page Select is set to ‘0’, only odd memory locations are accessed in odd/even modes.

See also GFX5[4] for setting VGA to odd/even modes and GFX6[1] for switching into
chain odd/even modes.

&ORFN�6HOHFW
This field selects the pixel clock. Internally selected pixel clock frequencies are:

0,6&287>�@ 0,6&287>�@)UHTXHQF\
0 0 25 MHz
0 1 28 MHz
1 0 External
1 1 External

Writing to this field reprograms video clock to a certain frequency. User must take care of
setting to other pixel clock values than 25 or 28 MHz through modifying the system video
clock, from which the video clock frequency is actually derived. Writing value 2 or 3 to
this bit-field means H[WHUQDO�FORFN�IUHTXHQF\ and does not change the video clock
frequency.

(QDEOH�9*$�'LVSOD\�0HPRU\
This bit enables or disables enables VGA memory accesses from the host. This bit must
be set to ‘1’, to obtain access to the VGA memory.

rev. 1.03 08.03.00

���

3RUW�,�2�%DVH
If set to zero, VGA emulates Monochrome I/O Addresses. If monochrome I/O addresses
are used, the color I/O ports are not decoded and vice versa. The port mappings in either
mode are:

)LHOG� � �
INPUTS1 3BA 3DA
FEATCTRL 3BA 3DA
CRTCINDEX 3B4 3D4
CRTCDATA 3B5 3D5

('#6%64.���(GCVWTG�%QPVTQNNGT QHHUGV����#J������#J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%#J
9TKVG�#FFTGUU �&#J�
EQNQT����$#J�
OQPQ�
+PFGZ �
#EEGUU�6[RG 4���9

(QTOCV � � � � � � � �

4 8UU 4

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
9VV � 9HUWLFDO�V\QF�VHOHFW
5 ��� 5HVHUYHG

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register contains vertical sync control bit. The write port address of the register is
determined by MISCOUT[0].

)LHOG�GHVFULSWLRQ�

9HUWLFDO�V\QF�VHOHFW
If set to zero (0), normal vertical sync is generated. If set to one (1), vertical sync is
logical OR of the vertical sync and the vertical display enable. Vertical display enable is
controlled by CRTC12, CRTC07[1], CRTC07[6] and CRTC40[7]

rev. 1.03 08.03.00

���

+02765����+PRWV�5VCVWU�� QHHUGV����J���� 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �
+PFGZ �
#EEGUU�6[RG 4

(QTOCV � � � � � � � �

84+ (5� (5� 55 4

(KGNFU (KGNF $KVU &GUETKRVKQP
95, � 9HUWLFDO�5HWUDFH�,QWHUUXSW
)6� �)HDWXUH�6WDWXV��
)6� �)HDWXUH�6WDWXV��
66 � 6ZLWFK�6HQVH
5 ��� 5HVHUYHG

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
If vertical interrupts are enabled, the status of the interrupt line can be read through this
register. Software can use Switch Sense bit to determine the type of the connected
monitor. This register is also used when writing to Attribute registers: dummy reading
from this register resets ATTRIDX to point to index.

)LHOG�GHVFULSWLRQ�

9HUWLFDO�5HWUDFH�,QWHUUXSW
Reports the status of vertical interrupt. If vertical interrupt has been generated, it must be
cleared by the interrupt handler using register CRTC11.
1 = Vertical interrupt is pending
0 = Interrupt line clear

)HDWXUH�6WDWXV��
Hardwired to zero (0).

)HDWXUH�6WDWXV��
Hardwired to zero (0).

6ZLWFK�6HQVH
Reports the status of the switch sense inside the DAC. This field can be used to determine
the monitor type. Typically, software uses Switch Sense to determine whether
monochrome or color monitor is connected. This is done by driving a high intensity color
values through the DAC. If red, green or blue wire to the monitor is not connected, the
current will go so high that the switch sense will be enabled. Since the output is
implemented as inverted, the actual Switch Sense value goes low.

rev. 1.03 08.03.00

���

+02765����+PRWV�5VCVWU�� QHHUGV����#J���� 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&#J�
EQNQT����$#J�
OQPQ�
9TKVG�#FFTGUU �
+PFGZ �
#EEGUU�6[RG 4

(QTOCV � � � � � � � �

4 & 84 .25Y .25V &'0

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
' ��� 'LDJQRVWLF
95 � 9HUWLFDO�5HWUDFH
/36Z � /LJKW�3HQ�6ZLWFK
/36W � /LJKW�3HQ�6WUREH
'(1 � 'LVSOD\�(QDEOH�1RW

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register contains debugging lines for color palette registers, vertical retrace and
display enable bits. Vertical Retrace and Display Enable Not are used by software to
synchronize to the screen refresh.

)LHOG�GHVFULSWLRQ�

'LDJQRVWLF
Diagnostic field indicates the value of two of the eight address lines to color palette. The
address lines which are read are be selected by ATTR12[4-5] according to the following
table:

$775��>�@ $775��>�@ ,13876�>�@ ,13876�>�@
0 0 line 2 line 0
0 1 line 5 line 4
1 0 line 3 line 1
1 1 line 7 line 6

9HUWLFDO�5HWUDFH
1 = vertical retrace is occurring
0 = vertical retrace is not occurring

/LJKW�3HQ�6ZLWFK
Hardwired to one (1).

/LJKW�3HQ�6WUREH
Hardwired to zero (0).

'LVSOD\�(QDEOH�1RW
0 = video is in display mode
1 = either blank or border is active

rev. 1.03 08.03.00

���

������ 6HTXHQFHU�5HJLVWHUV
5'3+0&':���5GSWGPEGT�+PFGZ�4GIKUVGT QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �%�J
+PFGZ �
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

+

(KGNFU (KGNF $KVU &GUETKRVKQP
, ��� ,QGH[

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register specifies index of the sequencer register to be accessed with the next I/O
read or write operation to port 3C5h.

5'3����5GSWGPEGT�4GUGV QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �%�J
+PFGZ �
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 54 #4

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
65 � 6\QFURQRXV�5HVHW
$5 � $V\QFURQRXV�5HVHW

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
Sequencer reset register. This register is implemented for compatibility only, and does not
affect the functionality of VGA Core.

)LHOG�GHVFULSWLRQ�

6\QFKURQRXV�5HVHW
 0 Hold sequencer in reset state
 1 Release reset

$V\QFKURQRXV�5HVHW
0 Hold sequencer in reset state
1 Release reset

rev. 1.03 08.03.00

���

5'3����%NQEMKPI�/QFG QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �%�J
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 51 5D(&% 5D6 $ ����&%

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
62 � 6FUHHQ�2II
6E) � 6KLIW�E\�)RXU
'& � 'RW�&ORFN
6E7 � 6KLIW�E\�7ZR
% � %DQGZLGWK
����'& � ����'RW�&ORFNV

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
Clocking mode register defines some important characteristics of the refresh. One can turn
screen off to achieve greater memory bandwidth to frame buffer from the host side. Shift
by four is used to divide serializer load frequency by four. Dot Clock is used to divide the
pixel clock by two for displaying low resolution modes. Shift by Two is used to divide the
serializer load frequency by two. 8 or 9 pixel wide characters can be selected using this
register in alphanumeric modes.

)LHOG�GHVFULSWLRQ�

6FUHHQ�2II
The screen off prevents the display refresh logic from accessing the frame buffer. This
results in greater bandwidth to the memory from the host side, and can be used during
high speed memory transfer.
0 Screen on
1 Screen off

6KLIW�E\�)RXU
0 Load serializers at every character cycle
1 Load serializers at every fourth character cycle

'RW�&ORFN
If this bit is set to ‘1’, dot clock is divided by two, and two consequent pixels are output
with same color. It is used to create low resolution modes, for example 320 pixels per
scanline. If set to zero, dot clock is not affected.

rev. 1.03 08.03.00

���

6KLIW�E\�7ZR
0 Load serializers at every character cycle
1 Load serializers at every second character cycle, if Shift by Four is not used.

%DQGZLGWK
Writing to this bit has no effect. It’s purpose is to force the memory bandwidth between
host and refresh interfaces.

����'RW�&ORFNV
1 character width is 8 pixels.
0 character width is 9 pixels.
9 pixel characters can be used only in alphanumeric modes. Selection between graphics
and alphanumeric modes is done by ATTR10[0].

5'3����2NCPG�/CUM QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �%�J
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 2/

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
30 ��� 3ODQH�0DVN

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
The register selects the planes which can be accessed by the standard VGA host write
operations.

)LHOG�GHVFULSWLRQ�

3ODQH�0DVN
If bit corresponding to plane number is ‘1’, the plane can be accessed by host write
operations. Correspondingly, bit ‘0’, corresponding to plane number, means that the
plane can’t be accessed by host write operations. Bit zero stands for plane ‘0’ and bit three
stands for plane ‘3’. Plane mask is not used in linear write mode.

rev. 1.03 08.03.00

���

5'3����%JCTCEVGT�/CR�5GNGEV QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �%�J
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 5#* 5#$ 5# 5$

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
6$+ � 6$+
6$% � 6$%
6$ ��� 6$
6% ��� 6%

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register selects the character maps used. Character map A is used if the character
attribute bit 3 is ‘0’. Character map B is used if bit 3 is ‘1’. Normally, the two character
maps are the same (and the register is programmed to zero). Position of the character map
is calculated by the following formulas:

Character map A start = SA × 16384 + SAH × 8192
Character map B start = SB × 16384 + SBH × 8192

Character map is resided in the memory plane 3, and each character consists of 32
consequent bytes. Thus, a single 256 character map requires 8192 bytes of memory.

5'3����/GOQT[�/QFG QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �%�J
+PFGZ �
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 %(1' '/2)#O

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
&) � &KDLQ�)RXU
2(� 2GG�(YHQ
(03 � ([WHQGHG�0HPRU\�3UHVHQW
*$P � *UDSKLFV�$OSKDQXPHULFV�PRGH

rev. 1.03 08.03.00

���

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
Memory Mode register controls host side odd/even mode behavior and has memory size
flag indicating the size of the video memory. Chain Four is used to enable special host
mode, where four display planes are chained together.

)LHOG�GHVFULSWLRQ�

&KDLQ�)RXU
If this bit is set to ‘1’ address to VGA memory is formed in a special way. Two low order
bits of address are ignored and will select the display plane where the data is written or
read. Two most significant bits of the address will become two least significant bits. For
example, if the memory write is to address 8007h, then the data is written to plane 3 of
memory address 8005h. This corresponds the double word addressing mode in VGA
refresh, enabled by CRTC14[6].Data is written only if corresponding bit in map mask
(SEQ2) is enabled. This setting takes priority over chain odd/even in GFX6[1] and
odd/even in GFX5[4].
0 Normal operation
1 Chain Four mode

2GG�(YHQ
This bit selects between odd/even and normal addressing modes. The value of GFX5[4]
should always be set to complement of this bit.
0 Odd/even enabled
1 Odd/even disabled

([WHQGHG�0HPRU\�3UHVHQW
0 Extended memory not present, memory size 64Kb
1 Extended memory present, memory size > 64Kb

rev. 1.03 08.03.00

���

������ &57&�5HJLVWHUV
%46%+0&':���%46%�4GIKUVGT�+PFGZ QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ �
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

+

(KGNFU (KGNF $KVU &GUETKRVKQP
, ��� ,QGH[

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register specifies the CRTC register which is accessed through port 3B5h/3D5. The
mapping of CRTCINDEX and other CRTC registers is determined by MISCOUT[0].
Writes to CRTC registers 0-7 can be disabled by setting CRTC11[7] to ‘1’.

%46%�����*QTK\QPVCN�6QVCN QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ �
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

*6

(KGNFU (KGNF $KVU &GUETKRVKQP
+7 ��� +RUL]RQWDO�7RWDO

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register together with CRTC40[2] determines the screen width - 5 in characters
including borders and blanking. This register can be written only if CRTC11[7] is zero.

)LHOG�GHVFULSWLRQV�

+RUL]RQWDO�7RWDO
These bits together with CRTC40[2] determine the total width of display area - 5. This
includes borders and blanking. The actual resolution depends on character width, which
may be 8 or 9 pixels.

rev. 1.03 08.03.00

���

%46%�����*QTK\QPVCN�&KURNC[�'PF QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

*&'

(KGNFU (KGNF $KVU &GUETKRVKQP
+'(��� +RUL]RQWDO�'LVSOD\�(QG

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register together with CRTC40[3] determine the total width -1 of display area in
characters.
This register can be written only if CRTC11[7] is zero.

)LHOG�GHVFULSWLRQV�

+RUL]RQWDO�'LVSOD\�(QG
These bits together with CRTC40[3] determine the visible display area - 1 in characters.
The actual resolution depends on character width, which may be 8 or 9 pixels.

%46%�����*QTK\QPVCN�$NCPMKPI�5VCTV QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

*$5

(KGNFU (KGNF $KVU &GUETKRVKQP
+%6 ��� +RUL]RQWDO�%ODQNLQJ�6WDUW

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register together with CRTC40[0] determines the start of horizontal blanking period.
This register can be written only if CRTC11[7] is zero

)LHOG�GHVFULSWLRQV�

+RUL]RQWDO�%ODQNLQJ�6WDUW
These bits together with CRTC40[0] determine the start of the horizontal blanking period
in characters.

rev. 1.03 08.03.00

���

%46%�����*QTK\QPVCN�$NCPMKPI�'PF QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 &'5 *$'

(KGNFU (KGNF $KVU &GUETKRVKQP
5 � 5HVHUYHG
'(6 ��� 'LVSOD\�(QDEOH�6NHZ
+%(��� +RUL]RQWDO�%ODQNLQJ�(QG

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register together with CRTC05[7], CRTC41[1-2], CRTC41[7] determine the end of
horizontal blanking period in characters. This register can be written only if CRTC11[7] is
zero.

)LHOG�GHVFULSWLRQV�

'LVSOD\�(QDEOH�6NHZ
Defines the number of characters by which horizontal display enable is delayed.

+RUL]RQWDO�%ODQNLQJ�(QG
These bits together with CRTC05[7], CRTC41[1-2] and CRTC41[7] determine the end of
horizontal blanking period.

If CRTC41[7] is ‘0’, the horizontal blanking period ends, when the character counter’s 6
lowest bits do equal the 6 low-order bits of horizontal blanking end value. With this
setting bits form CRTC41[1-2] are not included into horizontal blanking end value. This
is the standard VGA operation.

If CRTC41[7] is ‘1’ horizontal blanking ends, when 8 low-order bits correspond the
Horizontal Blanking End value. With this setting bits CRTC41[1-2] are included in
Horizontal Blanking End value.

rev. 1.03 08.03.00

���

%46%�����*QTK\QPVCN�5[PE�5VCTV QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

*55

(KGNFU (KGNF $KVU &GUETKRVKQP
+66 ��� +RUL]RQWDO�6\QF�6WDUW

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register together with CRTC40[1] determines the start of horizontal retrace period in
character clocks. This register can be written only if CRTC11[7] is zero.

)LHOG�GHVFULSWLRQV�

+RUL]RQWDO�6\QF�6WDUW
These bits together with CRTC40[1] determine the start of the horizontal retrace period in
characters.

%46%�����*QTK\QPVCN�5[PE�'PF QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

*$'� *4& *4'

(KGNFU (KGNF $KVU &GUETKRVKQP
+%(� � +RUL]RQWDO�%ODQNLQJ�(QG>�@
+5' ��� +RUL]RQWDO�5HWUDFH�'HOD\
+5(��� +RUL]RQWDO�5HWUDFH�(QG

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register determines the end of horizontal retrace period, horizontal retrace delay and
the sixth bit of end horizontal blanking value. This register can be written only if
CRTC11[7] is zero.

rev. 1.03 08.03.00

���

)LHOG�GHVFULSWLRQV�

+RUL]RQWDO�%ODQNLQJ�(QG>�@
This is the sixth bit of horizontal blanking end value. See CRTC03 for details.

+RUL]RQWDO�5HWUDFH�'HOD\
This is the number of characters to delay the horizontal retrace. These bits are added to the
horizontal retrace start value.

+RUL]RQWDO�5HWUDFH�(QG
This is a MOD 32 value determining end of the horizontal retrace period. When 5 low-
order bits of the character counter equal Horizontal Retrace End value, the horizontal
retrace period ends.

%46%�����8GTVKECN�6QVCN QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

86

(KGNFU (KGNF $KVU &GUETKRVKQP
97 ��� 9HUWLFDO�7RWDO

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register together with CRTC07[0], CRTC07[5] and CRTC40[6] determine the total
height of display -2 including borders and blanking. This register can be written only if
CRTC11[7] is zero

)LHOG�GHVFULSWLRQV�

9HUWLFDO�7RWDO
These bits together with CRTC07[0], CRTC07[5] and CRTC40[6] determine the total
height of display -2 including borders and blanking.

rev. 1.03 08.03.00

���

%46%�����%46%�1XGTHNQY�4GIKUVGT QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

855$� 8&'$� 86$� .%$� 8$5$� 855$� 8&'$� 86$�

(KGNFU (KGNF $KVU &GUETKRVKQP
966%� � 9HUWLFDO�6\QF�6WDUW�%LW��
9'(%� � 9HUWLFDO�'LVSOD\�(QG�%LW��
97%� � 9HUWLFDO�7RWDO�%LW��
/&%� � /LQH�&RPSDUH�%LW��
9%6%� � 9HUWLFDO�%ODQNLQJ�6WDUW�%LW��
966%� � 9HUWLFDO�6\QF�6WDUW�%LW��
9'(%� � 9HUWLFDO�'LVSOD\�(QG�%LW��
97%� � 9HUWLFDO�7RWDO�%LW��

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register includes bits which extend vertical counters. This register can be written
only if CRTC11[7] is zero, with the exception of bit 4 which can be written normally
regardless of CRTC11[7] setting.

)LHOG�GHVFULSWLRQV�

9HUWLFDO�6\QF�6WDUW�%LW��
The ninth bit of vertical sync start (CRTC10). Other extension bits are CRTC07[2] and
CRTC40[5].

9HUWLFDO�'LVSOD\�(QG�%LW��
The ninth bit of vertical display end (CRTC12). Other extension bits are CRTC07[1] and
CRTC40[7].

9HUWLFDO�7RWDO�%LW��
The ninth bit of vertical total (CRTC06). Other extension bits are CRTC07[0] and
CRTC40[6].

/LQH�&RPSDUH�%LW��
The ninth bit of line compare (CRTC18). Other extension bits are CRTC09[6] and
CRTC41[0]. This bit can be written even if CRTC11[7] is ‘1’.

rev. 1.03 08.03.00

���

9HUWLFDO�%ODQNLQJ�6WDUW�%LW��
The eighth bit of vertical blanking start (CRTC15). Other extension bits are CRTC09[5]
and CRTC40[4].

9HUWLFDO�6\QF�6WDUW�%LW��
The eighth bit of vertical sync start (CRTC10). Other extension bits are CRTC07[7] and
CRTC40[5].

9HUWLFDO�'LVSOD\�(QG�%LW��
The eight bit of vertical total (CRTC06). Other extension bits are CRTC07[5] and
CRTC40[6].

9HUWLFDO�7RWDO�%LW��
The eighth bit of vertical display end. Other extension bits are CRTC07[5 and
CRTC40[6].

%46%�����2TGUGV�4QY�5ECP QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 $2 245

(KGNFU (KGNF $KVU &GUETKRVKQP
5 � 5HVHUYHG
%3 ��� %\WH�3DQQLQJ
356 ��� 3UHVHW�5RZ�6FDQ

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register controls character horizontal byte panning by adding 0-3 to the address of
the first character on the screen. Smooth vertical scrolling can be done using Preset Row
Scan, which determines the first displayed scanline of the first character row.

)LHOG�GHVFULSWLRQV�

%\WH�3DQQLQJ
This field defines how many characters are panned from the left edge of the screen. If the
value of this field is ‘0’, screen is displayed normally. If the value is ‘3’, then first three
characters are skipped. The result is screen being scrolled left 3 characters.

3UHVHW�5RZ�6FDQ
This field determines the first displayed scanline on the first character row. Using this
register, it is possible to make smooth vertical scrolling across a character.

rev. 1.03 08.03.00

���

%46%�����%JCTCEVGT�%GNN�*GKIJV QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

%5& .%$� 8$5$� %*

(KGNFU (KGNF $KVU &GUETKRVKQP
&6' � &57&�6FDQ�'RXEOH
/&%� � /LQH�&RPSDUH�%LW��
9%6%� � 9HUWLFDO�%ODQNLQJ�6WDUW�%LW��
&+ ��� &KDUDFWHU�+HLJKW

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
CRTC Scan Double allows doubling of the scanlines, dividing the vertical resolution by 2.
Two extension bits, for Line Compare and Vertical Blanking, are in bits 5 and 6.
Character height is determined by bits 0 to 4.

)LHOG�GHVFULSWLRQV�

&57&�6FDQ�'RXEOH
If this bit is ‘1’, every scanline is displayed twice, dividing the vertical resolution by 2.

/LQH�&RPSDUH�%LW��
The tenth bit of line compare field. See CRTC18 for details.

9HUWLFDO�%ODQNLQJ�6WDUW�%LW��
The tenth bit of vertical blank start. See CRTC15 for details.

&KDUDFWHU�+HLJKW
This field determines the height of the character. Character height is between 1-32 pixels.
The value in this field is Character Height - 1.

rev. 1.03 08.03.00

���

%46%�#���%WTUQT�5VCTV QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ #J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 %* %5

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
&+ � &XUVRU�+LGH
&6 ��� &XUVRU�6WDUW

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register disables/enables the cursor and defines the first scanline of the cursor.

)LHOG�GHVFULSWLRQV�

&XUVRU�+LGH
0 cursor on
1 cursor off.

&XUVRU�6WDUW
This field determines the starting scanline of the cursor inside character box. if cursor start
is greater than cursor end (CRTC0B), cursor is not displayed.

%46%�$���%WTUQT�'PF QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ $J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 %5 %'

(KGNFU (KGNF $KVU &GUETKRVKQP
5 � 5HVHUYHG
&6 ��� &XUVRU�6NHZ
&(��� &XUVRU�(QG

rev. 1.03 08.03.00

���

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
Defines the scanline where cursor ends. Cursor Skew field specifies how many characters
cursor is skewed to right.

)LHOG�GHVFULSWLRQV�

&XUVRU�6NHZ
The number of characters the cursor is delayed from the cursor start address (CRTC0E
and CRTC0F).

&XUVRU�(QG
This field determines the ending scanline of the cursor inside character box. if cursor end
is smaller than cursor start (CRTC0A), cursor is not displayed.

%46%�%���5VCTV�#FFTGUU�*KIJ QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ %J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

55#*

(KGNFU (KGNF $KVU &GUETKRVKQP
66$+ ��� 6FUHHQ�6WDUW�$GGUHVV�+LJK

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register together with CRTC0D and CRTC43[0-4] define display start address.

)LHOG�GHVFULSWLRQV�

6FUHHQ�6WDUW�$GGUHVV�+LJK
Bits 8 to 15 of the display start address

rev. 1.03 08.03.00

���

%46%�&���5VCTV�#FFTGUU�.QY QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ &J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

55#.

(KGNFU (KGNF $KVU &GUETKRVKQP
66$/ ��� 6FUHHQ�6WDUW�$GGUHVV�/RZ

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register together with CRTC0C and CRTC43[0-4] define
the location in display memory where the screen refresh starts.

)LHOG�GHVFULSWLRQV�

6FUHHQ�6WDUW�$GGUHVV�/RZ
Bits 0 to 7 of the display start address

%46%�'���%WTUQT�.QECVKQP�*KIJ QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ 'J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

%.*

(KGNFU (KGNF $KVU &GUETKRVKQP
&/+ ��� &XUVRU�/RFDWLRQ�+LJK

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register together with CRTC0F determines the cursor’s location in the display
memory.

)LHOG�GHVFULSWLRQV�

&XUVRU�/RFDWLRQ�+LJK
Bits 8 to 15 of the cursor location.

rev. 1.03 08.03.00

���

%46%�(���%WTUQT�.QECVKQP�.QY QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ (J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

%..

(KGNFU (KGNF $KVU &GUETKRVKQP
&// ��� &XUVRU�/RFDWLRQ�/RZ

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register together with CRTC0E determines the cursor’s location in the display
memory.

)LHOG�GHVFULSWLRQV�

&XUVRU�/RFDWLRQ�/RZ
Bits 0 to 7 of the cursor location.

%46%�����8GTVKECN�5[PE�5VCTV QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

855

(KGNFU (KGNF $KVU &GUETKRVKQP
966 ��� 9HUWLFDO�6\QF�6WDUW

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register determines the eight least-significant bits of the vertical sync start value. The
other bits can be found from CRTC07[2], CRTC07[7] and CRTC40[5].

)LHOG�GHVFULSWLRQV�

9HUWLFDO�6\QF�6WDUW
Bits 0 to 7 of the vertical sync start. The other bits can be found from CRTC07[2],
CRTC07[7] and CRTC40[5].

rev. 1.03 08.03.00

���

%46%�����8GTVKECN�5[PE�'PF QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

24��� $ &8+ %8+ 85'

(KGNFU (KGNF $KVU &GUETKRVKQP
35��� � 3URWHFW�5HJLVWHUV����
% � %DQGZLGWK
'9, � 'LVDEOH�9HUWLFDO�,QWHUUXSW
&9, � &OHDU�9HUWLFDO�,QWHUUXSW
96(��� 9HUWLFDO�6\QF�(QG

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register determines the end of the vertical retrace period. Registers CRTC00-
CRTC07 can be protected from writing by bit 7. Vertical interrupt disable and clear flags
are in bits 4 and 5.

)LHOG�GHVFULSWLRQV�

3URWHFW�5HJLVWHUV����
If set to ‘1’, the registers from CRTC00 to CRTC07 are protected from writing, with
the exception of CRTC07[4]. if set to ‘0’ registers can be written normally

'LVDEOH�9HUWLFDO�,QWHUUXSW
If set to ‘1’ the vertical interrupt is disabled, and INPUTS0[7] never creates vertical
interrupt flag..
If set to ‘0’, interrupt is generated normally.

&OHDU�9HUWLFDO�,QWHUUXSW
When set to ‘0’ the vertical interrupt flag in ,13876� [7] is cleared, and interrupt can not
occur. When set to ‘1’ interrupt can occur again.

9HUWLFDO�6\QF�(QG
This register determines the end of vertical retrace period. When bits 0-3 of row scan
counter equal these bits the vertical retrace period ends.

rev. 1.03 08.03.00

���

%46%�����8GTVKECN�&KURNC[�'PF QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

8&'

(KGNFU (KGNF $KVU &GUETKRVKQP
9'(��� 9HUWLFDO�'LVSOD\�(QG

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register defines eight least-significant bits of display vertical resolution. Other bits
can be
found from CRTC07[1], CRTC07[6] and CRTC40[7].

)LHOG�GHVFULSWLRQV�

9HUWLFDO�'LVSOD\�(QG
Bits 0 to 7 vertical display end value.

%46%�����1HHUGV�4GIKUVGT QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

1

(KGNFU (KGNF $KVU &GUETKRVKQP
2 ��� 2IIVHW

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register defines least-significant bits of display memory offset value. This is the
difference between successive scanlines in display memory. Extended bits of the offset
value are CRTC43[5-7].

)LHOG�GHVFULSWLRQV�

2IIVHW
These bits define how many bytes difference exists between successive scanlines. The
actual value is multiplied by two, four or eight, depending on the addressing mode.

rev. 1.03 08.03.00

���

%46%�����7PFGTNKPG�4GIKUVGT QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 &9/ %D(7.

(KGNFU (KGNF $KVU &GUETKRVKQP
5 � 5HVHUYHG
':0 � 'RXEOH�:RUG�0RGH
&E) � &RXQW�E\�)RXU
8/ ��� 8QGHUOLQH�/RFDWLRQ

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register defines the position of the underline in character. The Count by Four and
double word addressing modes are controlled by this register.

)LHOG�GHVFULSWLRQV�

'RXEOH�:RUG�0RGH
If this bit is set to ‘1’, double word addressing is used. In double word addressing, address
to frame buffer increments in 4 byte steps. This is achieved by rotating the address to the
frame buffer left by 2. By using this approach, two most significant bytes will become two
least significant bytes. If double word addressing is not enabled CRTC17[6] controls
whether byte or word addressing is used.

&RXQW�E\�)RXU
If this bit is set to ‘1’, address to the frame buffer is incremented on every fourth character
clock. This is normally used together with CRTC14[6] in 256-color modes to allow the
sequencer to process all the four pixels loaded from a single double word aligned address.
If this bit is set to ‘0’, character counter is incremented normally.

8QGHUOLQH�/RFDWLRQ
This field specifies the scanline inside the character box, where the underlining occurs.

rev. 1.03 08.03.00

���

%46%�����8GTVKECN�$NCPM�5VCTV QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

8$5

(KGNFU (KGNF $KVU &GUETKRVKQP
9%6 ��� 9HUWLFDO�%ODQN�6WDUW

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
The register defines start of the vertical blanking period.

)LHOG�GHVFULSWLRQV�

9HUWLFDO�%ODQN�6WDUW
This register defines bits 0 to 7 of the vertical blanking start value. Other bits can be found
from CRTC07[3], CRTC09[5] and CRTC40[4].

%46%�����8GTVKECN�$NCPM�'PF QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

8$'

(KGNFU (KGNF $KVU &GUETKRVKQP
9%(��� 9HUWLFDO�%ODQN�(QG

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
The register defines end of the vertical blanking period.

)LHOG�GHVFULSWLRQV�

9HUWLFDO�%ODQN�(QG
When vertical counters 8 least-significant bits correspond Vertical Blank End value, the
vertical blanking period ends.

rev. 1.03 08.03.00

���

%46%�����/QFG�%QPVTQN�4GIKUVGT QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

*94 9$/ 4 %6 &8% 545% %/5

(KGNFU (KGNF $KVU &GUETKRVKQP
+:5 � +DUGZDUH�UHVHW
:%0 � :RUG�%\WH�0RGH
$: � $GGUHVV�:UDS
5 � 5HVHUYHG
&7 � &RXQW�E\�WZR
'9& � 'RXEOH�9HUWLFDO�&RXQWHUV
656& � 6HOHFW�5RZ�6FDQ�&RXQWHU
&06 � &RPSDWLELOLW\�0RGH�6XSSRUW

#9

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
The register defines end of the vertical blanking period.

)LHOG�GHVFULSWLRQV�

+DUGZDUH�5HVHW
0 refresh logic is deactivated.
1 refresh is activated.

:RUG�%\WH�0RGH
If this bit is ‘0’ frame buffer addresses are rotated left by one and the frame buffer is
accessed in two byte (word) steps. This setting takes priority over double word addressing
(CRTC14[6]). When the address is rotated most significant byte gets to the least
significant byte

If the bit is ‘1’, frame buffer address is not multiplied by two and frame buffer is accessed
in byte steps. However, if CRTC14[6] is enabled, then double word addressing is used.

$GGUHVV�:UDS
If Word addressing (CRTC17[6]) is used, this field determines whether address is rotated
or simply shifted. If set to ‘1’ rotation is done to 16-least significant bits of the address.
This means, that the bit 15 is rotated to bit 0. If set to ‘0’ rotation is done to 14-least
significant bits of the address. This means, that the bit 13 is rotated to bit 0.

rev. 1.03 08.03.00

���

&RXQW�E\�7ZR
If set to ‘1’, counter to frame buffer is incremented on every other character clock. This is
for refresh cycles only. This setting takes priority over Count by Four in CRTC14[5].

'RXEOH�9HUWLFDO�&RXQWHUV
1 vertical counter values are doubled by incrementing vertical scanline counters at

every other horizontal retrace.
0 vertical counters are clocked normally.

6HOHFW�5RZ�6FDQ�&RXQWHU
This bit is provided for hercules compatibility.
0 scanline counter bit 1 is substituted for frame buffer address bit 14.
1 no substitution is performed.

&RPSDWLELOLW\�0RGH�6XSSRUW
If set to ‘0’, frame buffer address bit 13 is substituted for scanline counter bit 0. This
provides for CGA compatibility.
If set to ‘1’, no substitution is performed.

%46%�����%46%�.KPG�%QORCTG QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

.%

(KGNFU (KGNF $KVU &GUETKRVKQP
/& ��� /LQH�&RPSDUH

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register sets the scanline from where the screen refreshing gets back to display
memory location 0.

)LHOG�GHVFULSWLRQV�

/LQH�&RPSDUH
This field defines 8 least-significant bits of the line compare value. Other bits can be
found from CRTC07[4] and CRTC09[6] andCRTC41[0]. When scanline counter equals
line compare the refresh starts from memory location 0. The ATTR10[5] selects whether
pixel panning is reset to zero or not during when line compare match occurs.

rev. 1.03 08.03.00

���

%46%�����%46%�'ZVGPUKQP�4GIKUVGT�� QHHUGV�����J 'ZVGPFGF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

8&'D� 86D� 855D� 8$5D� *&'D� *6D� *55D� *$5D�

(KGNFU (KGNF $KVU &GUETKRVKQP
9'(E� � 9HUWLFDO�'LVSOD\�(QG�ELW���
97E� � 9HUWLFDO�7RWDO�ELW���
966E� � 9HUWLFDO�6\QF�6WDUW�ELW���
9%6E� � 9HUWLFDO�%ODQN�6WDUW�ELW���
+'(E� � +RUL]RQWDO�'LVSOD\�(QG�ELW��
+7E� � +RUL]RQWDO�7RWDO�ELW��
+66E� � +RUL]RQWDO�6\QF�6WDUW�ELW��
+%6E� � +RUL]RQWDO�%ODQNLQJ�6WDUW�ELW��

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register extends VGA horizontal and vertical refresh counters.

rev. 1.03 08.03.00

���

%46%�����%46%�'ZVGPUKQP�4GIKUVGT�� QHHUGV�����J 'ZVGPFGF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

*$' ## 4 5#/ .# *$' .%$�

(KGNFU (KGNF $KVU &GUETKRVKQP
+%(� +RUL]RQWDO�%ODQNLQJ�([WHQVLRQ
$$ � $GGUHVV�$OLDVLQJ
5 � 5HVHUYHG
6$0 � 6HTXHQFHU�$GGUHVVLQJ�0RGH
/$ � /LQHDU�$GGUHVVLQJ
+%(��� +RUL]RQWDO�%ODQNLQJ�([WHQVLRQ
/&%� � /LQH�&RPSDUH�%LW���

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register extends some VGA refresh counters so that larger displays can be defined.

)LHOG�GHVFULSWLRQV�

+RUL]RQWDO�%ODQNLQJ�([WHQVLRQ
If this bit is set to ‘0’, horizontal blank end acts as MOD 64
counter to horizontal character clock. In this mode, the horizontal
blanking period ends, when 6 low-order bits correspond the horizontal
blanking end 6 low-order bits from CRTC3[0-4] and CRTC5[7].

If set to ‘1’, horizontal blank end acts as MOD 256 counter
to horizontal character clock. In this mode, the horizontal blanking
period ends, when 8 low-order bits correspond the horizontal
blanking end 6 low-order bits from CRTC3[0-4], CRTC5[7] and
CRTC41[1-2].

See CRTC03 for details.

$GGUHVV�$OLDVLQJ
0 frame buffer accesses are aliased to 256kb memory.
1 whole memory can be accessed through the VGA memory window using
banking registers.

6HTXHQFHU�$GGUHVVLQJ�0RGH
If this bit is set to ‘1’ the sequencer is extended to 64 bit to provide faster 8-bit linear
refresh. 8 or 9 8-bit pixels are loaded per sequencer fill cycle.
If this bit is set to ‘0’ the sequencer is in VGA mode.

rev. 1.03 08.03.00

���

/LQHDU�$GGUHVVLQJ
1 frame buffer is accessed linearly.
0 frame buffer is accessed in VGA fashion.

+RUL]RQWDO�%ODQNLQJ�([WHQVLRQ
If horizontal blanking extension is used (CRTC41[7]), these bits are the bits 6-7 of the
Horizontal Blanking End value.

%46%�����%46%�'ZVGPUKQP�4GIKUVGT�� QHHUGV�����J 'ZVGPFGF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ ��J
#EEGUU�6[RG 4

(QTOCV � � � � � � � �

4 84'

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
95(� 9*$�5HIUHVK�(QDEOH

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This is read only register that indicates whether VGA refresh is enabled. If this bit is zero,
true/high color refresh is active.

)LHOG�GHVFULSWLRQV�

9*$�5HIUHVK�(QDEOH
1 VGA Refresh is enabled.
0 Refresh is in 16-bit or higher mode.

rev. 1.03 08.03.00

���

%46%�����%46%�'ZVGPUKQP�4GIKUVGT�� QHHUGV�����J 'ZVGPFGF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

14$ &5#

(KGNFU (KGNF $KVU &GUETKRVKQP
25% ��� 2IIVHW�5HJLVWHU�%LWV�����
'6$ ��� 'LVSOD\�6WDUW�$GGUHVV�ELWV������

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register extends display start address and offset registers.

)LHOG�GHVFULSWLRQV�

2IIVHW�5HJLVWHU��ELWV�����
Details in CRTC13.

'LVSOD\�6WDUW�$GGUHVV�ELWV������
Details in CRTC0C and CRTC0D.

%46%�����4GCF�$CPM�5VCTV�#FFTGUU QHHUGV�����J 'ZVGPFGF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4$5#

(KGNFU (KGNF $KVU &GUETKRVKQP
5%6$ ��� 5HDG�%DQN�6WDUW�$GGUHVV

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register determines VGA memory read bank’s start address.

)LHOG�GHVFULSWLRQV�

5HDG�%DQN�6WDUW�$GGUHVV
When VGA memory is read, the actual address is address + (Read Bank Start Address) ×
65536.

rev. 1.03 08.03.00

���

%46%�����9TKVG�$CPM�5VCTV�#FFTGUU QHHUGV�����J 'ZVGPFGF�8)#

#EEGUU 4GCF�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
9TKVG�#FFTGUU �&�J�
EQNQT����$�J�
OQPQ�
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

9$5#

(KGNFU (KGNF $KVU &GUETKRVKQP
:%6$ ��� :ULWH�%DQN�6WDUW�$GGUHVV

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register determines VGA memory write bank’s start address.

)LHOG�GHVFULSWLRQV�

:ULWH�%DQN�6WDUW�$GGUHVV
When VGA memory is written, the actual address is address + (Write Bank Start Address)
× 65536.

rev. 1.03 08.03.00

���

������ *UDSKLFV�5HJLVWHUV
)(:+0&':���)TCRJKEU�4GIKUVGT�+PFGZ QHHUGV����'J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%'J
9TKVG�#FFTGUU �%'J
+PFGZ �
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

+

(KGNFU (KGNF $KVU &GUETKRVKQP
, ��� ,QGH[

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register specifies the register to be accessed by the next I/O read or write to address
3CFh.

)(:����5GV���4GUGV�4GIKUVGT QHHUGV����(J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%(J
9TKVG�#FFTGUU �%(J
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 542

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
653 ��� 6HW�5HVHW�3ODQH

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
One of settings for write mode 0 or 3.

)LHOG�GHVFULSWLRQV�

6HW�5HVHW�3ODQH
In write mode 0, if enable set/reset (GFX1) is enabled for corresponding plane, then the
plane is written with the value of the bit assigned to the plane in this field.

In write mode 3 each plane is written with the value of the bit assigned to the plane in this
field, before ALU operations, latch combination and plane masking are done.

rev. 1.03 08.03.00

���

)(:����'PCDNG�5GV���4GUGV�4GIKUVGT QHHUGV����(J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%(J
9TKVG�#FFTGUU �%(J
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 '54

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
(65 ��� (QDEOH�6HW�5HVHW

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
One of settings for write mode 0.

)LHOG�GHVFULSWLRQV�

(QDEOH�6HW�5HVHW
In write mode 0, if enable set/reset is enabled for corresponding plane, then the plane is
written with the value of the bit assigned to the plane in GFX0[0-3]

)(:����%QNQT�%QORCTG QHHUGV����(J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%(J
9TKVG�#FFTGUU �%(J
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

%%

(KGNFU (KGNF $KVU &GUETKRVKQP
��� 5HVHUYHG

&& ��� &RORU�&RPSDUH

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
One of settings for read mode 1.

rev. 1.03 08.03.00

���

)LHOG�GHVFULSWLRQV�

&RORU�&RPSDUH
This register defines the color that is compared against latch bytes in read mode 1. If the
color matches, then corresponding bit is ‘0’, otherwise, ‘1’. (this applies only for 8
pixels/byte modes). The color’s bit can be forced to match with GFX7[0-3], color don’t
care.

)(:����&CVC�4QVCVG QHHUGV����(J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%(J
9TKVG�#FFTGUU �%(J
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 #(5 &4

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
$)6 ��� $/8�)XQFWLRQ�6HOHFW
'5 ��� 'DWD�5RWDWH

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
Selects ALU function for write modes 0,2 and 3 and data rotation
for write modes 0 and 3.

)LHOG�GHVFULSWLRQV�

$/8�)XQFWLRQ�6HOHFW
ALU functions are operational in write modes 0, 2 and 3.
0 = no operation
1 = AND written data with latches
2 = OR written data with latches
3 = XOR written data with latches

'DWD�5RWDWH
Write mode 0 and 3 specific setting for rotating data before it’s written. The data is rotated
right.

rev. 1.03 08.03.00

���

)(:����4GCF�/CR QHHUGV����(J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%(J
9TKVG�#FFTGUU �%(J
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 4/

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
50 ��� 5HDG�0DS

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
Selects read map in read mode 0.

)LHOG�GHVFULSWLRQV�

5HDG�0DS
This field specifies the map that is read from the address. Applies only for read mode 0.

)(:����/QFG�4GIKUVGT QHHUGV����(J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%(J
9TKVG�#FFTGUU �%(J
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 5/ 1' 4/ 4 9/

(KGNFU (KGNF $KVU &GUETKRVKQP
5 � 5HVHUYHG
60 ��� 6HTXHQFHU�0RGH
2(� 2GG�(YHQ
50 � 5HDG�0RGH
5 � 5HVHUYHG
:0 ��� :ULWH�0RGH

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
Miscellaneous VGA host side functions are defined by this register.

rev. 1.03 08.03.00

���

)LHOG�GHVFULSWLRQV�

6HTXHQFHU�0RGH
These bits define how the sequencer is loaded to for palette or color palette accesses
0 = standard VGA output format
1 = CGA output format
2 = MCGA output format

2GG�(YHQ
If this bit is set to ‘1’, graphics controller is set to odd/even mode. This means that odd
memory accesses address odd memory planes, and even memory accessed address even
memory planes. This bit should be set to complement of SEQ4[2] to enable odd/even
addressing.

5HDG�0RGH
If set to ‘0’, read mode 0 is used. In read mode 0, single plane (determined by GFX4) is
read. If display is in chain four mode, odd-even or chain odd/even mode, then the plane
read is determined similarly to write.

If set to ‘1’, read mode 1 is used. In read mode 1, color don’t care (GFX7) and color
compare (GFX2) are used to determine how data is read.

:ULWH�0RGH
Defines which of the four write modes is used.

)(:����/KUEGNNCPGQWU�4GIKUVGT QHHUGV����(J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%(J
9TKVG�#FFTGUU �%(J
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 // %1')/

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
00 ��� 0HPRU\�0DS
&2(� &KDLQ�2GG�(YHQ
*0 � *UDSKLFV�0RGH

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
Miscellaneous VGA host side functions are defined by this register.

rev. 1.03 08.03.00

���

)LHOG�GHVFULSWLRQV�

0HPRU\�0DS
This field specifies the memory map of the VGA.

Memory Map Value Memory Start Memory End
0 A0000h BFFFFh
1 A0000h AFFFFh
2 B0000h B7FFFh
3 B8000h BFFFFh

&KDLQ�2GG�(YHQ
If this bit is set to ‘1’, then even addresses access planes 0 and 2, and odd
addresses access planes 1 and 3.
If this bit is set to ‘0’, no chaining occurs.

*UDSKLFV�0RGH
0 alphanumeric mode of operation
1 graphical mode of operation

)(:����%QNQT�&QP	V�%CTG QHHUGV����(J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%(J
9TKVG�#FFTGUU �%(J
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 %&V�%

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
&'W�& ��� &RORU�'RQ
W�&DUH

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
Read mode 1 specific register.

)LHOG�GHVFULSWLRQV�

&RORU�'RQ¶W�&DUH
This register is used in conjunction with GFX2, in read mode 1. Setting a bit to ‘1’ means
that corresponding plane is taken into comparison. Setting a bit to ‘0’ means that
corresponding plane is ignored, as if it had matched.

rev. 1.03 08.03.00

���

)(:����9TKVG�/CUM QHHUGV����(J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%(J
9TKVG�#FFTGUU �%(J
+PFGZ �J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

9/

(KGNFU (KGNF $KVU &GUETKRVKQP
:0 ��� :ULWH�0DVN

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
Bit mask for writing. Applies to modes 0 and 2.

)LHOG�GHVFULSWLRQV�

:ULWH�0DVN
In write mode 0, these bits control whether corresponding bit is written to the frame buffer
or not.
1 write
0 do not write.
In write mode 2, these bits select which of the bits are written from the host data and
which are taken from the latches.
1 host data
0 latched data.

rev. 1.03 08.03.00

���

������ $WWULEXWH�&RQWUROOHU�5HJLVWHUV

#664+&:���#VVTKDWVGT�+PFGZ QHHUGV�����J�������J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �%�J
+PFGZ �
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 '4# +

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
(5$ � (QDEOH�5HIUHVK�$FFHVV
, ��� ,QGH[

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register defines the index to the attributer registers. ATTRIDX has internal flip flop,
so that every write switches between attribute register index and attribute register data.
The filp flop is resetted to point to index by I/O read from INPUTS1 register. If bit 5 of
this register is zero, attribute registers are locked from refresh logic. This means that every
time attribute register is accessed, the bit 5 must be set to ‘1’ enable screen refresh.

#6642#.���2CNGVVG�4GIKUVGTU QHHUGV�����J�������J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �%�J
+PFGZ ��HJ
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 %+

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
&, ��� &RORU�,QGH[

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
Each of these registers define VGA palette color for a 16-color palette index, that is
indexes to 256-color palette registers.

rev. 1.03 08.03.00

���

Upper 2 bits of the color palette index are taken from ATTR14[2-3], and if ATTR10[7] is
‘1’, the bits 4-5 of the color palette index are taken from ATTR14[0-1]. The extension for
bits 4-5 do not apply for 256 or higher color modes.

#664�����#VVTKDWVG�%QPVTQNNGT�/QFG QHHUGV�����J�������J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �%�J
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

+25 2&%5 22% 4 $' .)' &6)#

(KGNFU (KGNF $KVU &GUETKRVKQP
,36 � ,QWHUQDO�3DOHWWH�6L]H
3'&6 � 3L[HO�'RXEOH�&ORFN�6HOHFW
33& � 3L[HO�3DQQLQJ�&RPSDWLELOLW\
5 � 5HVHUYHG
%(� %OLQN�(QDEOH
/*(� /LQH�*UDSKLFV�(QDEOH
'7 � 'LVSOD\�7\SH
*$ � *UDSKLFV�$OSKDQXPHULF

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register determines various settings for refresh logic.
See ATTRIDX for information about writing to attribute registers.

)LHOG�GHVFULSWLRQV�

,QWHUQDO�3DOHWWH�6L]H
If this field is ‘1’, the bits 4-5 of the palette register value are taken from ATTR14[0-1]. In
256 color modes this register is ignored.

3L[HO�'RXEOH�&ORFN�6HOHFW
If this field is selected, the attribute controller bypasses palette registers and pixels are
generated from 8-bit index formed by two consequent 4-bit values from the sequencer.
This means, that it requires two cycles to generate a single pixels from 4 bit wide
sequencer, and pixel of same color is displayed two times before the color can change.

3L[HO�3DQQLQJ�&RPSDWLELOLW\
If set to ‘1’, line compare match will reset the pixel panning value to ‘0’. This makes
possible to scroll the upper partition of the screen independently.
If set to ‘0’, line compare does not affect the scrolling.

rev. 1.03 08.03.00

���

%OLQN�(QDEOH
1 character blinking is enabled.
0 character blinking is disabled.

/LQH�*UDSKLFV�(QDEOH
This field applies only for 9-bit wide characters in alphanumeric modes.
If this bit is set to ‘1’, the ninth bit is copied from the eight bit for character codes in the
range C0h-DFh.
If this bit is set to ‘0’, the ninth bit is set to same as the background color.

'LVSOD\�7\SH
If this bit is set to ‘1’, monochrome display attributes are
used. The attribute codes for the monochrome adapter are:

Attribute Code Attribute
7h Normal
Fh Intense
1h Underline
9h Underline intense
70h Reverse
F0h Blinking to Reverse

*UDSKLFV�$OSKDQXPHULF
0 alphanumeric mode
1 graphics mode

#664�����1XGTUECP�%QNQT�4GIKUVGT QHHUGV�����J�������J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �%�J
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

1%

(KGNFU (KGNF $KVU &GUETKRVKQP
2& ��� 2YHUVFDQ�&RORU

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register determines the border color, which is defined as color between display end
and blanking.
See ATTRIDX for information about writing to attribute registers.

)LHOG�GHVFULSWLRQV�

2YHUVFDQ�&RORU
8 bit color palette index to overscan color.

rev. 1.03 08.03.00

���

#664�����%QNQT�2NCPG�'PCDNG�4GIKUVGT QHHUGV�����J�������J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �%�J
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 85/ %2'

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
960 ��� 9LGHR�6WDWXV�08;
&3(��� &RORU�3ODQH�(QDEOH

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
Register has mux for diagnostic field in INPUTS1 and mask for display planes.
See ATTRIDX for information about writing to attribute registers.

)LHOG�GHVFULSWLRQV�

9LGHR�6WDWXV�08;
Selects the lines used for diagnostic field in INPUTS1[4-5].

&RORU�3ODQH�(QDEOH
If corresponding plane is set to ‘1’, the plane is enabled for the refresh accesses.
If corresponding plane is set to ‘0’, the plane can’t be accessed by the video refresh.

#664�����*QTK\QPVCN�2KZGN�2CPPKPI QHHUGV�����J�������J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �%�J
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 *22

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
+33 ��� +RUL]RQWDO�3L[HO�3DQ

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
This register defines how many pixels characters are panned horizontally.
See ATTRIDX for information about writing to attribute registers.

rev. 1.03 08.03.00

���

)LHOG�GHVFULSWLRQV�

+RUL]RQWDO�3L[HO�3DQ
This field defines how many pixels screen is scrolled to the left. In 9-dot wide
alphanumeric modes the screen is scrolled the field value - 1 pixels, and with value ‘0’
eight pixels.

#664�����%QNQT�5GNGEV�4GIKUVGT QHHUGV�����J�������J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �%�J
+PFGZ ��J
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 %2#�� %2#��

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
&3$�� ��� &RORU�3DOHWWH�$GGUHVV��%LWV���DQG��
&3$�� ��� &RORU�3DOHWWH�$GGUHVV��%LWV���DQG��

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
The bits of this field extend the ATTRPAL register values to full 8-bit color palette index.
See ATTRIDX for information about writing to attribute registers.

)LHOG�GHVFULSWLRQV�

&RORU�3DOHWWH�$GGUHVV��%LWV���DQG��
These bits extend the palette index from ATTRPAL registers to full 8-bit palette index. In
256-color, or higher, modes this field is ignored.

&RORU�3DOHWWH�$GGUHVV��%LWV���DQG��
If ATTR10[7] is ‘1’, this the palette register bits 4-5 are substituted for these bits.

rev. 1.03 08.03.00

���

������ &RORU�3DOHWWH�5HJLVWHUV

%29#&&4���%QNQT�2CNGVVG�9TKVG�#FFTGUU QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �%�J
+PFGZ �
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

%29#

(KGNFU (KGNF $KVU &GUETKRVKQP
&3:$ ��� &RORU�3DOHWWH�:ULWH�$GGUHVV

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
Write address to the color palette registers.

)LHOG�GHVFULSWLRQV�

&RORU�3DOHWWH�:ULWH�$GGUHVV
Selects one of the 256 color palette registers for writing. Writing is done through
CPDATA register. Write to this field resets the palette index to point to red color
component.

%24#&&4���%QNQT�2CNGVVG�4GCF�#FFTGUU QHHUGV���������J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �
9TKVG�#FFTGUU �%�J
+PFGZ �
#EEGUU�6[RG 9

(QTOCV � � � � � � � �

%24#

(KGNFU (KGNF $KVU &GUETKRVKQP
&35$ ��� &RORU�3DOHWWH�5HDG�$GGUHVV

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
Read address to the color palette registers.

rev. 1.03 08.03.00

���

)LHOG�GHVFULSWLRQV�

&RORU�3DOHWWH�5HDG�$GGUHVV
Selects one of the 256 color palette registers for reading. Reading is done through
CPDATA register. Write to this field resets the palette index to point to red color
component.

%2#���%QNQT�2CNGVVG�&CVC QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �%�J
+PFGZ �
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

4 %%8

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
&&9 ��� &RORU�&RPSRQHQW�9DOXH

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
The palette entries are read and written through this port.

)LHOG�GHVFULSWLRQV�

&RORU�&RPSRQHQW�9DOXH
The color palette consists of 256 18-bit registers having intensities for red, green and blue.
Palette index points to one color component of a register. When data is read or written the
index autoincrements
to point to next component. The first component is red, and the last is blue. When the blue
component has been read or written the index moves to the next 18-bit register, or if the
register index overflows, returns to the register 0.

%256#6'���%QNQT�2CNGVVG�5VCVG QHHUGV�����J���� 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �
+PFGZ �
#EEGUU�6[RG 4

(QTOCV � � � � � � � �

4 54

(KGNFU (KGNF $KVU &GUETKRVKQP
5 ��� 5HVHUYHG
65 ��� 6WDWH�5HJLVWHU

rev. 1.03 08.03.00

���

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
Reports the status of the color palette accesses.

)LHOG�GHVFULSWLRQV�

6WDWH�5HJLVWHU
0 = Color palette write register (CPWADDR) was accessed last
3 = Color palette read register (CPRADDR) was accessed last

%2/#5-���%QNQT�2CNGVVG�/CUM QHHUGV�����J 5VCPFCTF�8)#

#EEGUU 4GCF�#FFTGUU �%�J
9TKVG�#FFTGUU �%�J
+PFGZ �
#EEGUU�6[RG 4�9

(QTOCV � � � � � � � �

%2/

(KGNFU (KGNF $KVU &GUETKRVKQP
&30 ��� &RORU�3DOHWWH�0DVN

5HJLVWHU�RYHUDOO�GHVFULSWLRQ�
Color palette address lines can be forced to zero with this register.

)LHOG�GHVFULSWLRQV�

&RORU�3DOHWWH�0DVN
The final color palette index is anded with this mask before the RGB value read from the
color palette register. Setting a bit in this field to ‘0’ clears the palette index's address line.
Usually this field is programmed to FFh to enable all the 256-color palette indexes.

rev. 1.03 08.03.00

���

��� 9LGHR�&RQWURO

���� 2YHUYLHZ
VS25203 provides a full internal video control logic unit. The video refresh logic supports
16-bit hi-color and 24-bit true-color display formats with all resolutions from 320 × 200 to
1600 × 1200 pixels. Note also that it is possible to use other screen ratios than the normal
4:3 screen aspect ratio. The only restriction is that blank areas have to be after a visible
area.

���� 5HIUHVK�7LPLQJ
The following figure illustrates the relationship between horizontal and vertical timing
signals. Terms used in the figure are the fields of the video registers.

KV\QFBHQG

Y
E
O
D
Q
N
B
H
Q
G

Y
E
O
D
Q
N
B
V
W
D
U
W

Y
V
\
Q
F
B
V
W
D
U
W

Y
V
\
Q
F
B
H
Q
G

8KUKDNG�CTGC

V
F
U
H
H
Q
B
K

Y
L
G

H
R

YLGHRBZ

KV\QFBVWDUW

KEODQNBHQG KEODQNBVWDUW

VFUHHQBZ

rev. 1.03 08.03.00

���

hblank_end, hblank_start are fields of the video_hblank register.

hsync_end, hsync_start are fields of the video_hsync register.

vblank_end, vblank_start are fields of the video_vblank register.

vsync_end, vsync_start are fields of the video_vsync register.

video_w, video_h are fields of the video_w_h register.

screen_w, screen_h are fields of the screen_w_h register.

Refer to the video interface register definitions on page 211. Note that all count type
registers uses the convention of count-from-0, and not count-from-1; once the maximum
count is reached, the value wraps around to 0.

���� ����×�����&DOFXODWLRQ�([DPSOH
VESA standards have predefined timing parameters for a set of chosen screen resolutions.
For non-VESA resolutions, this section illustrates the procedures for determining the
values to be placed into the fields of the VS25203 video registers which are defined and
described on page 211.

The monitor manual’s spec page will usually give the following information:

54

3

'&

%

6<1&

9,'(2

+25,=217$/ 9(57,&$/

$ 2

+RUL]RQWDO�
$ Scanline duration: 31.778 µs
% Sync duration: 3.813 µs
& Back porch: 1.589 µs
' Front porch: 0.953 µs

rev. 1.03 08.03.00

���

9HUWLFDO�
2 Frame duration : 16.683 ms
3 Sync duration : 64 µs
4 Back porch : 1.017 ms
5 Front porch : 350 µs

I
Y

Vertical frequency:
1

16 683. PV
 = 59.94 Hz

�� Calculate the estimated display size, which is, as a rule of thumb, about:
640 × 1.25 = 800
480 × 1.25 = 600

�� Calculate the clock frequency:
800 × 600 × 59.94 Hz = 28.8 MHz

�� Horizontal front porch:
0.953µs × 28.8 MHz = 27 pixels

�� Horizontal sync duration:
3.813µs × 28.8 MHz = 110 pixels

�� Horizontal back porch:
1.589µs × 28.8 MHz = 46 pixels

�� Calculate video_w:
640 + 27 + 110 + 46 = 823 pixels

�� Vertical front porch:
350µs × 28.8 MHz = 10080 pixels

This means:
10080

823
12

SL[HOV
SL[HOV

OLQH

= lines

�� Vertical sync duration:
64 µs × 28.8 MHz = 1843 pixels

This means:
1843

823
2

SL[HOV
SL[HOV

OLQH

= lines

�� Vertical back porch:
1.017 µs × 28.8 MHz = 29290 pixels

This means:
29290

823
35

SL[HOV
SL[HOV

OLQH

= lines

����video_h size:
480 + 12 + 2 + 35 = 529 lines

rev. 1.03 08.03.00

���

����Insert the values into appropriate registers:
screen_w = 640 register 34, page 212
screen_h = 480 register 34, page 212
video_w = 823 register 33, page 212
video_h = 529 register 33, page 212
hblank_start = 641 register 36, page 214
hsync_start = 668 register 38, page 215
hsync_end = 778 register 38, page 215
hblank_end = 0 register 36, page 214
vblank_start = 481 register 35, page 213
vsync_start = 493 register 37, page 214
vsync_end = 495 register 37, page 214
vblank_end = 0 register 35, page 214

��� Calculate the clock coefficients for the desired clock frequency. The video clock
frequency can be calculated from the formula:

()
)

P FRHI

Q FRHI
287 U FRHI

=
+

+ ×
×

_

_
.

_

2

2 2
14 3181818MHz

where:
QBFRHI��PBFRHI�and�UBFRHI�are count coefficients for the on-chip frequency
synthesizer.

With m_coef = 126, n_coef = 14 and r_coef = 2, we get a pixel frequency
of 28.6MHz.

��� Insert the coefficient values into video_clk_cfg (18) register, page 33.

���� 9LGHR�,QWHUIDFH�5HJLVWHUV

4GIKUVGT�CFFTGUU 1HHUGV� 4GIKUVGT�PCOG

�� 0084h YLGHRBZLGWKBKHLJKW
�� 0088h VFUHHQBZLGWKBKHLJKW
�� 008Ch YLGHRBYEODQN
�� 0090h YLGHRBKEODQN
�� 0094h YLGHRBYV\QF
�� 0098h YLGHRBKV\QF
�� 009Ch YLGHRBEDVHBFRQI
�� 00A0h YLGHRBELWBFRQILJ
�� 00A4h UHVHUYHG

rev. 1.03 08.03.00

���

XKFGQAYAJ TGIKUVGT��� QHHUGV�����J�

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

XKFGQAJ
XKFGQAJ XKFGQAY

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP

YLGHRBZ ���� YLGHRBZLGWK
YLGHRBK ����� YLGHRBKHLJKW

YLGHRBZBK� register specifies the size of the area scanned by the video-x and video-y
counters. The visible screen occupies a portion of this memory, starting from the (0,0)-
point.
YLGHRBZ
Specifies the last value which video-x counter reaches. This value is the total width minus
one. For example, if 800 is desired for the video total width, value 799 is specified in this
field.
YLGHRBK
Specifies the last value which video-y counter reaches. This value is the total height minus
one. For example, if 525 is desired for the video total height, value 524 is specified in this
field.

UETGGPAYAJ TGIKUVGT��� QHHUGV�����J�

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

UETGGPAJ
UETGGPAJ UETGGPAY

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP

VFUHHQBZ ���� VFUHHQBZLGWK
VFUHHQBK ����� VFUHHQBKHLJKW

VFUHHQBZBK�registers specifies the size of the actual displayed screen. Pixels are sent to
the display as long as the values of video-x counter is less than screen_w and as long as
the video-y counter is less than screen_h�
VFUHHQBZ
Specifies the width of the displayed screen minus one. (6HH� video_w_h� register 33�
video_w� field). For example, if 640 is desired for the screen width, value 639 is
specified in this field.
VFUHHQBK
Specifies the height of the displayed screen minus one. (6HH�video_w_h� register 33�
video_h field). For example, if 400 is desired for the screen height, value 399 is
specified in this field.

rev. 1.03 08.03.00

���

XKFGQAXDNCPM TGIKUVGT��� QHHUGV����%J�

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

XDNCPMAUVCTV
XDNCPMAUVCTV XDNCPMAGPF

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP

YEODQNBHQG ���� YHUWLFDO�EODQN�HQG
YEODQNBVWDUW ����� YHUWLFDO�EODQN�VWDUW

YLGHRBYEODQN register specifies the timing of the vertical blank signal relative to the
video-y counter.
YEODQNBHQG
Specifies the video-y counter value which ends the vertical blank signal. This value is the
vertical blank end minus one. (6HH� video_w_h� register 33, video_h field). For
example, if 490 is desired for the vertical blank to end, value 489 is specified in this field.
YEODQNBVWDUW
Specifies the video-y counter value which starts the vertical blank signal. This value is the
vertical blank start minus one. (6HH� video_w_h� register 33, video_h field). For
example, if 410 is desired for the vertical blank to start, value 409 is specified in this field.
The blank area can be made to overlap the screen area. It is also possible to initialize
vblank_end to a lower value than vblank_start. This causes the blank area to
wrap around the bottom of the video coordinates.

XKFGQAJDNCPM TGIKUVGT��� QHHUGV�����J�

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

JDNCPMAUVCTV
JDNCPMAUVCTV JDNCPMAGPF

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
KEODQNBHQG ���� KRUL]RQWDO�EODQN�HQG
KEODQNBVWDUW ����� KRUL]RQWDO�EODQN�VWDUW

YLGHRBKEODQN register specifies the timing of the horizontal blank signal relative to the
video-x counter.
KEODQNBHQG
Specifies the video-x counter value which ends the horizontal blank signal. This value is
the horizontal blank end minus one. (6HH�video_w_h�register 33, video_w field). For
example, if 790 is desired for the horizontal blank to end, value 789 is specified in this
field.

rev. 1.03 08.03.00

���

KEODQNBVWDUW
Specifies the video-x counter value which starts the horizontal blank signal. This value is
the horizontal blank start minus one. (6HH�video_w_h�register 33, video_w field). For
example, if 650 is desired for the horizontal blank to start, value 649 is specified in this
field.
The blank area can be made to overlap the screen area. Also it is possible to initialize the
hblank_end to lower value than hblank_start. This causes the blank area to wrap
around the right edge of the video coordinates.

XKFGQAXU[PE TGIKUVGT��� QHHUGV�����J�

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

XU[PEAUVCTV
XU[PEAUVCTV XU[PEAGPF

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
YV\QFBHQG ���� YHUWLFDO�V\QF�HQG
YV\QFBVWDUW ����� YHUWLFDO�V\QF�VWDUW

YV\QFBHQG
Specifies the video-y counter value which ends the vertical sync signal. This value is the
vertical sync end minus one. (6HH� video_w_h� register 33, video_h field). For
example, if 480 is desired for the vertical sync to end, value 479 is specified in this field.
YV\QFBVWDUW
Specifies the video-y counter value which starts the vertical sync signal. This value is the
vertical sync start minus one. (6HH� video_w_h� register 33, video_h field). For
example, if 420 is desired for the vertical sync to start, value 419 is specified in this field.
The sync area can be made to overlap the screen area. It is also possible to initialize the
vsync_end to a lower value than vsync_start. This causes the sync area to wrap
around the bottom edge of the video coordinates.

XKFGQAJU[PE TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

JU[PEAUVCTV
JU[PEAUVCTV JU[PEAGPF

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP

KV\QFBHQG ���� KRUL]RQWDO�V\QF�HQG
KV\QFBVWDUW ����� KRUL]RQWDO�V\QF�VWDUW

KV\QFBHQG
Specifies the video-x counter value which ends the horizontal sync signal. This value is
the horizontal sync end minus one. (6HH�video_w_h�register 33, video_w field). For
example, if 780 is desired for the horizontal sync to end, value 779 is specified in this
field.

rev. 1.03 08.03.00

���

KV\QFBVWDUW
Specifies the video-x counter value which starts the horizontal sync signal. This value is
the horizontal sync start minus one. (6HH�video_w_h�register 33, video_w field). For
example, if 660 is desired for the horizontal sync to start, value 659 is specified in this
field.
The sync area can be made to overlap the screen area. Also it is possible to initialize the
hsync_end to lower value than hsync_start. This causes the sync area to wrap
around the right edge of the video coordinates.

XKFGQADCUGAEQPH TGIKUVGT��� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

OJ
OJ UETACFFT
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
VFUBDGGU ���� 6FUHHQ�EDVH�DGGUHVV
PK ����� 6FUHHQ�PHPRU\�KHLJKW

The�YLGHRBEDVHBFRQI register contains information about how the screen data is stored in
the memory.

PK
The screen memory height can be calculated with the following formulas:
mh = Screen height / SIZE
16-bit pixels: SIZE = 32
32-bit pixels: SIZE = 16

VFUBDGGU
Specifies the start address of the screen memory as a multiple of 2048 bytes.

rev. 1.03 08.03.00

���

XKFGQADKVAEQPHKI TGIKUVGT��� QHHUGV���#�J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

JDO XYO FRN FRR FV JDR XDR JUR XUR RY
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
SZ � 3L[HO�ZLGWK����ELW������ELW
YVS � 9HUWLFDO�V\QF��SRODULW\
KVS � +RUL]RQWDO�V\QF��SRODULW\
YES � 9HUWLFDO�EODQN�SRODULW\
KES � +RUL]RQWDO�EODQN�SRODULW\
GW � '$&�WHVW��5HVHUYHG�
GSS � 'XSOLFDWH�SL[HO
GSO � 'XSOLFDWH�OLQH
YZP � 9LGHR�ZLGWK�PVE
KEP � +EODQN�ZLGWK�PVE

YLGHRBELWBFRQILJ register contains a collection of bits used for configuring the behavior
of the video interface.
SZ
0 pixel width is 16 bits
1 pixel width is 32 bits
YVS
Specifies the polarity of the vsync signal.
KVS
Specifies the polarity of the hsync signal.
YES
Specifies the polarity of the vblank signal.
KES
Specifies the polarity of the hblank signal.
GSS
If set to one each line is twice. Useful for displaying low resolution screen on a high
resolution display
'SO
If set to one each pixel displayed twice. Useful for displaying low resolution screen on a
high resolution display
YZP
MSB for video width register (Added to cover high resolution modes)
KEP
MSB for horizontal register (Added to cover high resolution modes).

rev. 1.03 08.03.00

���

���� 79�2XWSXW�8QLW

����� 2YHUYLHZ
TV output unit works parallel with video refresh and can be turned on/off whether TV-
signaling is used. Required screen size as well as synchronization signaling for the TV are
programmed to the Video refresh block. Video-refresh output is fed to TV-output unit that
performs interlacing and flicker filtering to produce final output signaling.

����� 8VDJH
The TV-output unit is controlled through PCI Configuration Space Register 21
(feat_reg). The TV-output unit is turned on by setting ffe field. This starts
interlacing process as well as flicker filtering. Flicker filter threshold (field fft) is
adjustable and there exists also 100 Hz TV set flicker filter enhancement field ffm.

Note: Flicker filter halves the line frequency and doubles the horizontal blank time. It
does not add the horizontal sync. This must be taken into account when setting the video
parameters.

����� 79�2XWSXW�8QLW�5HJLVWHU

PCI Configuration Space Register 21, feature register, is presented below.

HGCVATGI TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

FFX GWKQ
HHG HHO HHV XGG XTUN XTU XFG
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
GGY �� GLVDEOH�GLJLWDO�YLGHR
HXLR �� HQDEOH�XVHU�,�2�>���@
IIH �� IOLFNHU�ILOWHU�HQDEOH
IIP �� IOLFNHU�ILOWHU�PRGH
IIW ���� IOLFNHU�ILOWHU�WKUHVK
YHH � 9*$�H[WHQVLRQ�HQDEOH
YUVO � 9*$�UHIUHVK�VHOHFW�ORFN
YUV � 9*$�UHIUHVK�VHOHFW
YGH � 9*$�GHFRGH�HQDEOH

rev. 1.03 08.03.00

���

IIH
Flicker filter enable, a bit for activating the flicker filter and interlace module.
IIP
Flicker filter mode, affects the mode of operation for the flicker filter.
0 default value, optimal in most cases.
1 modified algorithm, which might provide better results on 100/120 Hz televisions.
IIW
Flicker filter threshold, threshold value for flicker filtering 0 means no threshold (filter
always), 16 means no filtering (perform interlace conversion still).

rev. 1.03 08.03.00

���

���� 9LGHR�&DSWXUH�8QLW

����� 2YHUYLHZ
The video capture block is totally independent functional block, which stores data
captured through digital RGB pins into on-board memory for further use. 4:2:2 YUV data
format described in ITU-R BT.656-3 standard is supported.

����� 8VDJH
The video capture unit takes the inputs from digital RGB (set the disable digital video-bit
to "1" from the Feature Register, register 21) and user_io[0] pins. When 8 bit mode is
used captured data is read from pin b[7:0] and in 16 bit mode 8 MSB bits are read from
g[7:0].

ITU-R BT.656-3 standard capture data stream contains information about vertical and
horizontal synchronization, but optionally external synchronization can be used
(capt_w_h -register ssel -field). Vertical synchronization is read through r[1] pins and
horizontal r[0] respectively. The Rising edge of these signals is considered as start of the
line/field (hor/ver). When using this mode current field information is carried in r[2] pin.

The video capture unit uses external clock that is driven through user_io[0] pin. Capture
data sampling is done at the rising edge of this clock. The capture unit is working up to 35
MHz (capture clock). If capt_w_h -register bit cq is on, data sampling is done when
clock qualifier signal r[3] is active.

Captured data is stored in 4:2:2 YUV format into on-board memory location defined by
capture base address.

If the interrupts are enabled (capt-base-conf- reg irq1 and irq2 fields), the video
capture unit indicates its interrupts by setting capi field of status (48) register. The
interrupt can be acknowledged by writing 1 to the same field.

����� 9LGHR�&DSWXUH�8QLW�LQSXWV

,QSXW 'HVFULSWLRQ
b[7:0] capture_data_in[7:0]
g[7:0] capture_data_in[15:8] if 16-bit mode is used
r[0] vertical sync_in (if ssel bit is set)
r[1] horizontal sync_in (if ssel bit is set)
r[2] field information (contains the field (odd/even) field

identification) 0 during field1, 1 during field2 (if ssel
bit is set)

r[3] clock qualifier
user_io[0] capture_clk

rev. 1.03 08.03.00

���

����� 9LGHR�&DSWXUH�8QLW�5HJLVWHUV

4GIKUVGT�CFFTGUU 1HHUGV� 4GIKUVGT�PCOG

�� 007Ch FDSWBEDVHBFRQI
�� 0080h FDSWBZBK

ECRVADCUGAEQPH TGIKUVGT��� QHHUGV����%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

GPC KTS� KTS� OGOAJGKIJV
DCUGACFFT

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
HQD �� YLGHR�FDSWXUH�HQDEOH
LUT� �� ,QWHUUXSW�UHTXHVW���HQDEOH
LUT� �� ,QWHUUXSW�UHTXHVW���HQDEOH
PHPBKHLJKW ����� 0HPRU\�KHLJKW
EDVHBDGGU ���� %DVH�DGGUHVV

FDSWBEDVHBFRQI�contains control bits for video capture block.
HQD
Video capture enable/disable (1/0).
,UT�
This field enables/disables interrupt of detected odd fields from the capture source.
,UT�
This field enables/disables interrupt of detected even fields from the capture source.
PHPBKHLJKW
This field gives the memory height of the target in 2048 byte blocks.
EDVHBDGGU
The capture base address specifies the start address of the capture memory as multiple of
2048 bytes.

rev. 1.03 08.03.00

���

ECRVAYAJ TGIKUVGT��� QHHUGV�����J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

EFV ES UUGN FGK ECRAJGKIJV
ECRAYKFVJ

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
FGW �� &DSWXUH�GDWD�W\SH
FT �� FDSWXUH�FORFN�TXDO
VVHO �� FDSWXUH�V\QF�KV�YV
GHL �� FDSWXUH�GHLQWHUODFH
FDSBKHLJKW ����� FDSWXUH�KHLJKW
FDSBZLGWK ��� FDSWXUH�ZLGWK

FDSWBZBK�contains information to control the video capture block. For typical ITU-R
BT.656-3 standard usage cdt = 0, cq = 0 and ssel =0.
FGW
The capture data type
0 8 bit
1 16 bit.
FT
Selection bit whether the clock qualifier input is used in data synchronisation.
VVHO
Selection bit whether the synchronisation signals are used during capture process.
GHL
This bit defines whether both of the fields are captured or the odd frame duplicated and
capture is done at half speed.
&DSBKHLJKW
Cap height defines the video capture area height in pixels.
&DSBZLGWK
Cap width defines the video capture area width in pixels.

rev. 1.03 08.03.00

���

���� %ORFN�7UDQVIHU�8QLW

����� 2YHUYLHZ
VS25203 includes totally independent Block Transfer Unit, which performs area fill and
copy operations as well as bit copy operations.

����� 8VDJH
The Block Transfer Unit is controlled by register 56 - 63. After writing the register 63 the
unit starts the operation defined by other register. Status information can be read from
status register (register 48) blti field. Byte base addressing is used with all the
Block Transfer Unit addresses.

����� %ORFN�7UDQVIHU�8QLW�5HJLVWHUV

5HJLVWHU�1XPEHU $GGUHVV�2IIVHW� 5HJLVWHU�QDPH 'HVFULSWLRQ
56 00E0h blt_src_strd Source stride
57 00E4h blt_tgt_strd Target stride
58 00E8h blt_fg_color Foreground color
59 00ECh blt_bg_color Background color
60 00F0h blt_params Parameters
61 00F4h blt_src_addr Source address
62 00F8h blt_tgt_addr Target address
63 00FCh blt_size Block size

DNVAUTEAUVTF TGIKUVGT��� QHHUGV���'�J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

Z��AUQWTEGAUVTKFG
;AUQWTEGAUVTKFG

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
[��BVRXUFHBVWULGH ����� 6RXUFH�VWULGH�RI�[�GLUHFWLRQ
<BVRXUFHBVWULGH ���� 6RXUFH�VWULGH�RI�\�GLUHFWLRQ

EOWBVUFBVWUG�contains information block source strides.
;��BVRXUFH�VWULGH
This field gives x-direction offset for physical memory address.
<BVRXUFHBVWULGH
This fiels gives the offset for physical memory when stepping in y-direction.

rev. 1.03 08.03.00

���

DNVAVIVAUVTF TGIKUVGT��� QHHUGV���'�J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

Z��AVCTIGVAUVTKFG
;AVCTIGVAUVTKFG

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
[��BWDUJHWBVWULGH ����� 7DUJHW�VWULGH�RI�[�GLUHFWLRQ
<BWDUJHWBVWULGH ���� 7DUJHW�VWULGH�RI�\�GLUHFWLRQ

EOWBWJWBVWUG�contains information block target strides.
;��BWDUJHW�VWULGH
This field gives x-direction offset for physical memory address.
<BWDUJHWBVWULGH
This fiels gives the offset for physical memory when stepping in y-direction.

DNVAHIAEQNQT TGIKUVGT��� QHHUGV���'�J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

HIAEQNQT
HIAEQNQT

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
IJBFRORU ����)RUHJURXQG�FRORU

%OWBIJBFRORU�contains information about foreground color when making bit copy
operation.
)JBFRORU
Specifies foreground color. When using 16 or 8 bit color modes the whole register should
be filled by duplicating the desired color. Alternatively different colors can be specified
for the vertical lines on the screen by specifying different values to the 8 and 16 bit
sections of the register.

DNVADIAEQNQT TGIKUVGT��� QHHUGV���'%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

DIAEQNQT
DIAEQNQT

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
EJBFRORU ���� %DFNJURXQG�FRORU

%OWBEJBFRORU�contains information about background color when making bit copy
operation.

rev. 1.03 08.03.00

���

%JBFRORU
Specifies background color. When using 16 or 8 bit color modes the whole register should
be filled by duplicating the desired color. Alternatively different colors can be specified
for the vertical lines on the screen by specifying different values to the 8 and 16 bit
sections of the register.

DNVARCTCOU TGIKUVGT��� QHHUGV���(�J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

DNVAQRGT RZNAV[RG
�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
EOWBRSHU ��� %ORFN�WUDQVIHU�RSHUDWLRQ
S[OBW\SH ��� 3L[HO�W\SH

%OWBSDUDPV�contains general information for Block Transfer Unit.
%OWBRSHU
Defines the operation:
00 fill
Fill the target are with foreground color.
01 copy
Copies data from the source area to target area.
10 bit copy (fg and bg)

Makes bit copy operation using both foreground and background color
11 bit copy (only fg)
Make bit copy operation using only foreground. Background bytes are left empty.
3[OBW\SH
Defines pixel type for operation:
00 8 bit (VGA)
01 16 bit (3D)
10 32 bit (3D)

.

DNVAUTEACFFT TGIKUVGT��� QHHUGV���(�J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

UTEACFFT
UTEACFFT

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
VUFBDGGU ���� 6RXUFH�DGGUHVV

%OWBVUFBDGGU�contains address for source data.
6UFBDGGU�The byte address for the first source byte to be handled.

rev. 1.03 08.03.00

���

DNVAVIVACFFT TGIKUVGT��� QHHUGV���(�J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

VIVACFFT
VIVACFFT

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
WJWBDGGU ���� 7DUJHW�DGGUHVV

%OWBWJWBDGGU�contains address for target of data.
7JWBDGGU�The byte address for the first target byte.

DNVAUK\G TGIKUVGT��� QHHUGV���(%J

(QTOCV �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

\GLU JGKIJV
[GLU YKFVJ

�� �� �� �� �� �� � � � � � � � � � �

(KGNFU (KGNF $KVU &GUETKRVKQP
\GLU �� <�GLUHFWLRQ
KHLJKW ����� KHLJKW�RI�WKH�EORFN
[GLU �� ;�GLUHFWLRQ
ZLGWK ���� ZLGWK�RI�WKH�EORFN

%OWBVL]H�contains information about the block size and direction of the specified
operation.
\GLU�defines y direction for the operation.
0 from top to bottom
1 from bottom to top.
[GLU�defines x direction for the operation.
0 form left to right
1 from right to left
KHLJKW defines the height of the block.
:LGWK defines the width of the block.

rev. 1.03 08.03.00

���

���� ,QWHUQDO���([WHUQDO�'$&
VS25203 contains an internal triple 8-bit Video DAC, which has a maximum operating
frequency of 200MHz.

It is also possible to use an external Video DAC with the following features:
triple 8-bit D/A converters
TTL compatible inputs
construction optionally +5 V or +3.3 V.

rev. 1.03 08.03.00

���

���� $SSOLFDWLRQ�1RWHV

����� 3&,�%XV�5HUIHUHQFH�'HVLJQ

������� ,QWURGXFWLRQ
The schematic examples and layout guidelines referred in this section are intended for
engineers implementing the VS25203 board. The information presented here is for
reference only and is subject to change. Designers should contact VLSI Solution for the
latest schematics and further information before production.

The schematics represent a sample PCI Bus implementation of VS25203 with detailed
discussions of components and their board placement. The layout discussion provides
guidelines for specific layout issues such as analog and digital ground separation and
recommended trace width restrictions.

������� 3RZHU�8S�&RQILJXUDWLRQ�6XPPDU\
On system reset or power-up, the video subsystem configuration information is latched
into VS25203’s internal configuration registers from the data stored in the on-board
EPROM. This data is read using the pixel bus data lines, BTB[0..7] for data and
BTR[0..7] and BTG[0..7] for address. The EPROM is enabled with the USE_ROM signal
from VS25203. The on-board Video BIOS contains data for the following:

Enable VS25203
Program DAC/Clock to a value of 90MHz
Set display memory data path width (32 or 64 bits) and DRAM type

������� &RQWHQW�RI�(3520
The last eight addresses from the EPROM are automatically loaded into the internal
registers as follows:

0 subsystem vendor id bits 7:0
1 subsystem vendor id bits 15:8
2 subsystem id bits 7:0
3 subsystem id bits 15:8
4 memory config reg bits 7:0
5 memory config reg bits 15:8
6 memory config reg bits 23:16
7 memory config reg bits 31:24

(address 7 means the last address of the EPROM)

The last 8 addresses are implemented by VS25203 to access locations FFF8h – FFFFh. If
a 32KB or smaller EPROM is used the top-most address bits are ignored. The maximum
EPROM size is 64 KB. The EPROM contents can also be accessed using the normal PCI
expansion ROM access mechanism. The EPROM address is provided by the digital
Red/Green/Blue (RGB) pins so that the R-bus contains the top (MSB) bits, and G-bus the
lower (LSB) bits. B-bus is used for reading the data.

rev. 1.03 08.03.00

���

������� 3&,�%XV�,QWHUIDFH
VS25203 is designed for a glueless interface to the PCI bus. The pins on VS25203 are
directly connected to similarly named pins on the PCI bus. This is summarized below.

3&,�6LJQDO�1DPHV
$GGUHVV�GDWD�EXV AD[31..0]

C/BE[3..0]#
PAR

&RQWURO FRAME#
STOP#
IRDY#
TRDY#
IDSEL
DEVSEL#

6\VWHP CLK
RST#

%XV�0DVWHU�&RQWURO REQ#/
GNT#

,QWHUUXSW INTA#
(UURU�5HSRUWLQJ PERR#

SERR#

The pin assignments on VS25203 are carefully optimized to allow short and direct
connections between the bus pins and VS25203 pins. VS25203 should be placed within
an inch of the PCI connector and approximately centered on the connector.

������� 0HPRU\�,QWHUIDFH
VS25203 features a fully integrated 64-bit synchronous DRAM memory interface.
VS25203 supports 256K×16 EDO DRAM, SDRAM and SGRAM memory chips. The
memory size can range from 2 MB to 32MB.

Memory timing adjustment through software will be clarified in the next revision.

'5$0�,QWHUIDFH�6LJQDO�1DPHV
6LJQDO�1DPH %DQN$ %DQN%
$GGUHVV AA0[11..0] BA0[11..0]
'DWD ADQ[15..0] BDQ[15..0]

&RQWURO ARAS
ACAS
AWE
ACS0
AMEMCLK
ADQM[3..0]

BRAS
BCAS
BWE
BCS0
BMEMCLK
BDQM[3..0]

rev. 1.03 08.03.00

���

������� 0RQLWRU�,QWHUIDFH
Proper signal conditioning with carefully selected component values is critical for
providing good crisp video at high frequencies and minimizing EMC (radio frequency
interference) emissions.

5*%�/LQHV
RGB lines are nominally terminated in 75Ω to DAC ground, thus providing half of the
37.5Ω DC load; the other half is in the monitor. Z filters on each RGB line control edge
rates and reduce EMC to an acceptable level. The z filter’s cutoff frequency should be as
high as possible to prevent signal degradation but as low as possible to provide for
reduced emissions. The 75Ω RGB termination resistors should be located as close as
possible to VS25203 and the Z filters should be located very close to the output DB-15
connector. The traces between VS25203 and the filters should be direct, with no vias or
sharp corners. These traces must be designed with a characteristic impedance as close as
possible to 75Ω. During high refresh rate operations, the signal edge rates are fast enough
that a trace as short as a few inches begins to behave as a transmission line.

6\QF�/LQHV
The hsync and vsync signals are isolated with in-line 75Ω resistors. Future VS_VP
reference designs will rely on LC filters of ferrite bead (17Ω at 100 MHz) and 220-pF
capacitor to further reduce EMC emissions. The LC filter outputs connect directly to the
DB-15 output connector.

''&�%�6XSSRUW
The graphics subsystem requires information on the monitor’s display capabilities for
selecting optimum refresh rates. This information is obtained from the monitor via a
serial bi-directional bus from VS25203 to the monitor. VS25203 provides a serial clock
(SCL) and reads serial data (SDA) from a VESA DDC2B compliant monitor.

������� 3RZHU�'LVWULEXWLRQ�DQG�&RQGLWLRQLQJ
The most common reason for poor quality video is the failure on the part of the board
designer to properly manage power distribution and conditioning. For this reason,
dedicated power and ground planes are very strongly recommended for boards based on
VS25203.

VS25203 operates at 3.3 V supply power. PCI bus and video interfaces are also 5 V
compatible. Selection is done with pin A6, (AGP / PCI). When using 5 V interfaces
additional 5 V pad power is fed through pins D4 and AA11, (VDD_Clamp).

rev. 1.03 08.03.00

���

'HFRXSOLQJ�FDSDFLWRUV
Bypass capacitors are used to minimize power sags caused by current spikes and reduce
the power distribution impedance. Bulk bypassing is present in the area where power
comes onto the board, around the DRAM array, and near the EPROM. The bulk bypass is
usually a tantalum or an aluminum electrolytic capacitor which at very high frequencies
becomes inductive, rendering it unsuitable for fast switching signals. For this reason local
bypassing capacitors are distributed as needed next to each high-speed IC. When an un-
bypassed IC switches current into a load, the current comes from the supply line, exits the
output pin, and flows through the load into the ground line. Any series impedance in the
supply and ground lines causes large local glitches in both lines. The role of the bypass
capacitor is to supply fast transient currents to the IC, so they do not have to come through
the supply-line series impedance.

A bypass capacitor can do its job efficiently only if it is mounted in close proximity to the
pins that draw the fast transient currents. And if it is some distance from the IC, the series
inductance of the PCB traces gives the transients an opportunity to develop glitches. For
this reason uncased multilayer ceramic (MLC) surface mount components are used
exclusively in the design. High operating frequencies of the VS25203 board are affected
not only by the inductance due to the length of the PCB traces but also the lead length of
the bypass capacitors.

'HGLFDWHG�*URXQG�3ODQH
A dedicated ground plane minimizes differential ground offsets and more nearly
approximates the ideal notion of ground. Additionally, a ground plane is necessary to
predict and control the characteristic impedance of those traces that must be treated as
transmission lines.

Analog and digital ground separation is very critical for mixed signal devices such as
VS25203. The ground plane on the VS25203 design has cuts to partially isolate the
critical analog ground sections from the relatively noisy digital ground associated with
SDRAM memory and the PCI bus interface. The schematic reflects three ground planes, a
digital ground and two isolated analog grounds; one for the DAC and one for the clock
synthesizer. Traces for analog grounds should not have any digital connections.

������� &ORFN�6\QWKHVL]HU
VS25203 on-chip clock synthesizer requires a quartz crystal of the following
characteristics:

&U\VWDO�FKDUDFWHULVWLFV
)UHTXHQF\ 14.31818 MHz +/- 0.1%

Fundamental resonance
(65 25 to 45Ω
/RDG�&DSDFLWDQFH 15 to 40 pF, parallel resonance

The crystal should be connected across Osc_in (pin A4) and Osc_out (pin C6) of
VS25203. If a 14.318 MHz oscillator is used instead of a crystal, then the clock output of
the oscillator should be connected to Osc_in only, and Osc_out should be left open. If a
crystal is used, both sides of the crystal should have soldering pads to allow grounding of
the case and attaching of the crystal to a quiet ground plane. The parallel resonant crystal
requires 22pF balance capacitors and a 1MΩ shunt resistor to initiate stable oscillation.

rev. 1.03 08.03.00

���

���� 3LQRXWV�DQG�6LJQDO�'HVFULSWLRQV

����� 3LQRXW
The following two figures describe the pin configuration of VS25203. The chip is
packaged in a 304-pin thermally enhanced ball grid array (BGA) package. Signals are
grouped so that pins for external memory chips are on both sides of VS25203, pins for the
PCI bus are on the lower part of the processor and the remaining pins (DAC, PLL, Osc,
etc.) are on the upper part.

To reduce communication delay, it is recommended putting the external memory chips on
the right hand side and on the left hand side of the processor.

�� �� �� �� �� �� �� �� �� �� �� �� �� �� � � � � � � � � �

$ B[0] B[1] B[2] B[5] R[0] R[2] R[4] R[7] G[2] G[5]
use_
rom#

usr_io
[2]

vsync_
in

vsync PCLK
clk_
tst [0]

clk_
tst [1]

AGP/P
CI

VDD_
syn

Osc_
in

Vref
GND_
dac

BCS[3] $

%
ACS#[
0]

ACS#[
1]

B[3] B[6] R[1] R[3] R[5] G[0] G[3] G[6]
usr_io
[0]

usr_io
[3]

hsync_
in

cblank
usr_io[
5]

csync
Video_
clk

GND_
syn

filter_
pros

GND_
bias

IGreen IBlue
BCS#[2
] %

&
ADQ
[31]

ADQ
[30]

B[4] B[7]
VDD_
CORE

GND_
CORE

R[6] G[1] G[4] G[7]
usr_io
[1]

usr_io
[4]

GND_
CORE

usr_io[
6]

VDD_
CORE

hsync
filter_
video

Osc_
out

IRed
VDD_
dac

BDQ
[00]

BDQ
[01]

BDQ
[02] &

'
ADQ
[29]

ADQ
[28]

ADQ
[27]

ADQ
[26]

VDD_P
ADv

GND_
dig

VDD_P
ADv

GND_
dig

VDD_P
ADv

GND_
dig

VDD_P
ADv

VDD_P
ADv

VDD_P
ADv

VDD_P
ADv

GND_
dig

Pros_
clk

Rres
GND_
dig

VDD_
Clamp

GND_
digb

BDQ
[03]

BDQ
[04] '

(
ADQ
[25]

ADQ
[24]

ADQ
[23]

GND_
diga

VDD_P
ADb

BDQ
[05]

BDQ
[06]

BDQ
[07] (

)
ADQ
[22]

ADQ
[21]

ADQ
[20]

VDD_P
ADa

GND_
digb

BDQ
[08]

BDQ
[09]

BDQ
[10]

)

*
ADQ
[19]

ADQ
[18]

ADQ
[17]

GND_
diga

VDD_P
ADb

BDQ
[11]

BDQ
[12]

BDQ
[13]

*

+
ADQ
[16]

Amem
clk

Amem
clkin

VDD_P
ADa

VDD_P
ADb

BDQ
[14]

BDQ
[15]

BDQM
[3]

+

- AWE# ARAS#
GND_
CORE

GND_
diga

VDD_
CORE

GND_
CORE

BDQM
[2]

BA[11] -

.
ADQM
[0]

ADQM
[1]

ACAS#
VDD_
CORE

GND_
digb

BA[10] BA[09] BA[08] .

/ AA[00] AA[01] AA[02]
VDD_P
ADa

VDD_P
ADb

VDD_P
ADb

BA[07] BA[06] /

0 AA[03] AA[04] AA[05]
GND_
diga

GND_
digb

BA[05] BA[04] BA[03] 0

1 AA[06] AA[07]
VDD_P
ADa

VDD_P
ADa

VDD_P
ADb

BA[02] BA[01] BA[00] 1

3 AA[08] AA[09] AA[10]
GND_
diga

VDD_
CORE

BCAS
BDQM
[1]

BDQM
[0] 3

5 AA[11]
ADQM
[2]

GND_
CORE

VDD_
CORE

GND_
digb

GND_
CORE

BRAS# BWE# 5

7
ADQM
[3]

ADQ
[15]

ADQ
[14]

VDD_P
ADa

VDD_P
ADb

Bmem
clkin

Bmem
clk

BDQ
[16] 7

8
ADQ
[13]

ADQ
[12]

ADQ
[11]

VDD_P
ADa

GND_
digb

BDQ
[17]

BDQ
[18]

BDQ
[19] 8

9
ADQ
[10]

ADQ
[09]

ADQ
[08]

GND_
diga

VDD_P
ADb

BDQ
[20]

BDQ
[21]

BDQ
[22] 9

:
ADQ
[07]

ADQ
[06]

ADQ
[05]

VDD_P
ADa

GND_
digb

BDQ
[23]

BDQ
[24]

BDQ
[25] :

<
ADQ
[04]

ADQ
[03]

GND_
diga

VDD_P
ADp

GND_
digp

VDD_
CORE

VDD_P
ADp

GND_
digp

GND_
digp

VDD_P
ADp

GND_
CORE

VDD_
CORE

VDD_P
ADp

GND_
digp

VDD_P
ADp

GND_
CORE

VDD_P
ADp

GND_
digp

VDD_P
ADp

BDQ
[26]

BDQ
[27]

BDQ
[28]

BDQ
[29] <

$$
ADQ
[02]

ADQ
[01]

ADQ
[00]

GND_
CORE

PCI_A
D[06]

PCI_C/
BE#[0]

PCI_A
D[11]

VDD_P
ADp

PCI_A
D[15]

VDD_
CORE

GND_
digp

GND_
CORE

VDD_
Clamp

PCI_A
D[17]

PCI_A
D[21]

VDD_
CORE

VDD_P
ADp

GND_
digp

GND_
digp

PCI_A
D[29]

PCI_
CLK

BDQ
[30]

BDQ
[31] $$

$%
ACS#[
2]

PCI_A
D[00]

PCI_A
D[02]

PCI_A
D[05]

PCI_A
D[07]

PCI_A
D[09]

PCI_A
D[12]

PCI_A
D[14]

PCI_
PAR

PCI_
PERR#

PCI_
DEVSE
L#

PCI_
IRDY#

PCI_C/
BE#[2]

PCI_A
D[18]

PCI_A
D[20]

PCI_A
D[23]

PCI_C/
BE#[3]

PCI_A
D[25]

PCI_A
D[27]

PCI_A
D[30]

PCI_
GNT#

BCS#[1
]

BCS#[0
] $%

$&
ACS#[
3]

PCI_A
D[01]

PCI_A
D[03]

PCI_A
D[04]

PCI_A
D[08]

PCI_A
D[10]

PCI_A
D[13]

PCI_C/
BE#[1]

PCI_
SERR#

PCI_
STOP#

PCI_
TRDY
#

PCI_
FRAM
E#

PCI_A
D[16]

PCI_A
D[19]

PCI_A
D[22]

PCI_
IDSEL

PCI_A
D[24]

PCI_A
D[26]

PCI_A
D[28]

PCI_A
D[31]

PCI_
REQ#

PCI_
RST#

PCI_
INTA# $&

96�����
%RWWRP�9LHZ

(PINS UP)

rev. 1.03 08.03.00

���

� � � � � � � � � �� �� �� �� �� �� �� �� �� �� �� �� �� ��

$
BCS#[3
]

GND_
dac

Vref
Osc_
in

VDD_
syn

AGP/P
CI

clk_
tst[1]

clk_
tst[0]

PCLK vsync
vsync_
in

usr_io
[2]

use_
rom#

G[5] G[2] R[7] R[4] R[2] R[0] B[5] B[2] B[1] B[0]

%
BCS#[2
]

IBlue IGreen
GND_
bias

filter_
pros

GND_
syn

Video_
clk

csync
usr_io[
5]

cblank
hsync_
in

usr_io
[3]

usr_io
[0]

G[6] G[3] G[0] R[5] R[3] R[1] B[6] B[3]
ACS#[
1]

ACS#[
0]

&
BDQ
[02]

BDQ
[01]

BDQ
[00]

VDD_
dac

IRed
Osc_
out

filter_
video

hsync
VDD_
CORE

usr_io[
6]

GND_
CORE

usr_io
[4]

usr_io
[1]

G[7] G[4] G[1] R[6]
GND_
CORE

VDD_
CORE

B[7] B[4]
ADQ
[30]

ADQ
[31]

'
BDQ
[04]

BDQ
[03]

GND_
digb

VDD_
Clamp

GND_
dig

Rres
Pros_
clk

GND_
dig

VDD_P
ADv

VDD_P
ADv

VDD_P
ADv

VDD_P
ADv

GND_
dig

VDD_P
ADv

GND_
dig

VDD_P
ADv

GND_
dig

VDD_P
ADv

ADQ
[26]

ADQ
[27]

ADQ
[28]

ADQ
[29]

(
BDQ
[07]

BDQ
[06]

BDQ
[05]

VDD_P
ADb

GND_
diga

ADQ
[23]

ADQ
[24]

ADQ
[25]

)
BDQ
[10]

BDQ
[09]

BDQ
[08]

GND_
digb

VDD_P
ADa

ADQ
[20]

ADQ
[21]

ADQ
[22]

*
BDQ
[13]

BDQ
[12]

BDQ
[11]

VDD_P
ADb

GND_
diga

ADQ
[17]

ADQ
[18]

ADQ
[19]

+
BDQM
[3]

BDQ
[15]

BDQ
[14]

VDD_P
ADb

VDD_P
ADa

Amem
clkin

Amem
clk

ADQ
[16]

- BA[11]
BDQM
[2]

GND_
CORE

VDD_
CORE

GND_
diga

GND_
CORE

ARAS# AWE#

. BA[08] BA[09] BA[10]
GND_
digb

VDD_
CORE

ACAS
ADQM
[1]

ADQM
[0]

/ BA[06] BA[07]
VDD_P
ADb

VDD_P
ADb

VDD_P
ADa

AA[02] AA[01] AA[00]

0 BA[03] BA[04] BA[05]
GND_
digb

GND_
diga

AA[05] AA[04] AA[03]

1 BA[00] BA[01] BA[02]
VDD_P
ADb

VDD_P
ADa

VDD_P
ADa

AA[07] AA[06]

3
BDQM
[0]

BDQM
[1]

BCAS#
VDD_
CORE

GND_
diga

AA[10] AA[09] AA[08]

5 BWE# BRAS#
GND_
CORE

GND_
digb

VDD_
CORE

GND_
CORE

ADQM
[2]

AA[11]

7
BDQ
[16]

Bmem
clk

Bmem
clkin

VDD_P
ADb

VDD_P
ADa

ADQ
[14]

ADQ
[15]

ADQM
[3]

8
BDQ
[19]

BDQ
[18]

BDQ
[17]

GND_
digb

VDD_P
ADa

ADQ
[11]

ADQ
[12]

ADQ
[13]

9
BDQ
[22]

BDQ
[21]

BDQ
[20]

VDD_P
ADb

GND_
diga

ADQ
[08]

ADQ
[09]

ADQ
[10]

:
BDQ
[25]

BDQ
[24]

BDQ
[23]

GND_
digb

VDD_P
ADa

ADQ
[05]

ADQ
[06]

ADQ
[07]

<
BDQ
[29]

BDQ
[28]

BDQ
[27]

BDQ
[26]

VDD_P
ADp

GND_
digp

VDD_P
ADp

GND_
CORE

VDD_P
ADp

GND_
digp

VDD_P
ADp

VDD_
CORE

GND_
CORE

VDD_P
ADp

GND_
digp

GND_
digp

VDD_P
ADp

VDD_
CORE

GND_
digp

VDD_P
ADp

GND_
diga

ADQ
[03]

ADQ
[04]

$$
BDQ
[31]

BDQ
[30]

PCI_
CLK

PCI_A
D[29]

GND_
digp

GND_
digp

VDD_P
ADp

VDD_
CORE

PCI_A
D[21]

PCI_A
D[17]

VDD_
Clamp

GND_
CORE

GND_
digp

VDD_
CORE

PCI_A
D[15]

VDD_P
ADp

PCI_A
D[11]

PCI_C/
BE#[0]

PCI_A
D[06]

GND_
CORE

ADQ
[00]

ADQ
[01]

ADQ
[02]

$%
BCS#[0
]

BCS#[1
]

PCI_
GNT#

PCI_A
D[30]

PCI_A
D[27]

PCI_A
D[25]

PCI_C/
BE#[3]

PCI_A
D[23]

PCI_A
D[20]

PCI_A
D[18]

PCI_C/
BE#[2]

PCI_
IRDY#

PCI_D
EVSEL
#

PCI_
PERR#

PCI_
PAR

PCI_A
D[14]

PCI_A
D[12]

PCI_A
D[09]

PCI_A
D[07]

PCI_A
D[05]

PCI_A
D[02]

PCI_A
D[00]

ACS#[
2]

$&
PCI_
INTA#

PCI_
RST#

PCI_
REQ#

PCI_A
D[31]

PCI_A
D[28]

PCI_A
D[26]

PCI_A
D[24]

PCI_
IDSEL

PCI_A
D[22]

PCI_A
D[19]

PCI_A
D[16]

PCI_
FRAM
E#

PCI_
TRDY
#

PCI_
STOP#

PCI_
SERR#

PCI_C/
BE#[1]

PCI_A
D[13]

PCI_A
D[10]

PCI_A
D[08]

PCI_A
D[04]

PCI_A
D[03]

PCI_A
D[01]

ACS#[
3]

96�����
7RS�9LHZ

(PINS DOWN)

rev. 1.03 08.03.00

���

����� 6LJQDO�GHVFULSWLRQV
The signals for the VS25203 device are described in this section. The following tables list
each signal, its pin location, the operating mode (input, output, analog, power) and
provide some descriptions. The signals are grouped according to their functional purpose.

������� ([WHUQDO�'$&�6LJQDOV

([WHUQDO�9LGHR�'$&�3LQ�6LJQDOV

6LJQDO�QDPH 3LQ 0RGH 'HVFULSWLRQ
B[0] A23 I/O 8-bit data bus for blue color / BIOS data. this bus is used as the data bus (input)
B[1] A22 I/O when performing ROM accesses. It is also possible to utilize it as an extra digital
B[2] A21 I/O input resource if the digital RGB outputs are not used.
B[3] B21 I/O
B[4] C21 I/O
B[5] A20 I/O
B[6] B20 I/O
B[7] C20 I/O
cblank B10 O Composite-blanking signal, created from the horizontal and vertical blank signals.
csync B8 O Composite sync signal out, created from the horizontal and vertical sync signals.
G[0] B16 O 8 bit data bus for green color / BIOS low order bits address. It is used as the low
G[1] C16 O order address bits when performing ROM accesses. It is also possible to utilize
G[2] A15 O the bus as an extra digital output resource if the digital RGB outputs are not used.
G[3] B15 O
G[4] C15 O
G[5] A14 O
G[6] B14 O
G[7] C14 O
hsync C8 O Horizontal sync signal.
PCLK A9 O Delayed clock signal for external DAC.
R[0] A19 O 8 bit data bus for red color / BIOS high order bits address.
R[1] B19 O This bus is used as the high order address bits when performing ROM accesses.
R[2] A18 O It is also possible to utilize it as an extra digital output resource if the digital RGB
R[3] B18 O outputs are not used.
R[4] A17 O
R[5] B17 O
R[6] C17 O
R[7] A16 O
vsync A10 O Vertical sync signal.

rev. 1.03 08.03.00

���

������� 3//�6LJQDOV
3//�6LJQDOV

6LJQDO�QDPH 3LQ 0RGH 'HVFULSWLRQ
clk_tst[0] A8 I clk_tst[0] configures the direction of the Video_clk pin.
clk_tst[1] A7 I clk_tst[1] configures the direction of the Pros_clk pin.

clk_tst[1:0]=00 internal PLL generated clock pins are not active.
clk_tst[1:0]=01 clock pins used as clock inputs.
clk_tst[1:0]=10 internal PLL generated clock pins used as outputs.
clk_tst[1:0]=11 reserved.

filter_pros B5 O Core PLL external RC loop filter, typical component values C=100nF, R=400 ohms.
filter_video C7 O Video PLL external RC loop filter, typical component values C=100nF, R=400 ohms.
Pros_clk D8 I/O Processor clock. Normally not connected, can be used either as a clock input or as a

clock output depending on the clk_tst signals.
Video_clk B7 I/O Video clock. Normally not connected, can be used either as a clock input or as a

clock output depending on the clk_tst signals.
Osc_in A4 analog External chrystal connection for the internal clock generator.
Osc_out C6 analog Typical crystal frequency is 14.3181818 MHz.

������� ,QWHUQDO�9LGHR�'$&�6LJQDOV
,QWHUQDO�9LGHR�'$&�3LQ�6LJQDOV

6LJQDO�QDPH 3LQ 0RGH 'HVFULSWLRQ
hsync_in B11 I Horizontal synchronization input. VS252 will detect the transition from non-active

to active state on this line, and synchronize its internal operation to it.
vsync_in A11 I Vertical synchronization input. VS252 will detect the transition from non-active to

active state on this line, and synchronize its internal operation to it.
IBlue B2 O Blue, green and red analog (current mode) outputs; RS-343-A compatible.
IGreen B3 O
IRed C5 O
Rres D6 analog Resistor reference of 1100 ohms should be connected between this pin and ground.
Vref A3 analog Voltage reference for the video DAC. This is the output of VS252’s internal voltage

reference (1.23V). The output is relatively high impedance (10kohms); it is possible to
override it with an external voltage reference. It is recommended that a
bypass capacitor is attached to this pin.

������� 0LVFHOODQHRXV�6LJQDOV
0LVFHOODQHRXV�6LJQDOV

6LJQDO�QDPH 3LQ 0RGH 'HVFULSWLRQ
use_rom# A13 O Use ROM (active low)> VS252 can use a ROM which is connected to the digital

RGB lines for boot configuration and as a BIOS ROM. The use_rom# line is used
to differentiate between the normal digital video usage and the ROM access usage.
It should be connected to the ROM chip select and output enable lines; both signals
should be active and the ROM used must set the data pins to high impedance state
when it is not selected.

AGP / PCI A6 I Pad operation mode selection. "0" = AGP and "1" = PCI. See Supply Signals VDD_Clamp.
usr_io[0] B13 I/O
usr_io[1] C13 I/O User configurable general purpose I/O pins.
usr_io[2] A12 I/O These pins can be read and written, and their direction changed using internal
usr_io[3] B12 I/O registers.
usr_io[4] C12 I/O
usr_io[5] B9 I/O
usr_io[6] C10 I/O

rev. 1.03 08.03.00

���

������� $�0HPRU\�6LJQDOV

$�PHPRU\�6LJQDOV

6LJQDO�QDPH 3LQ 0RGH 'HVFULSWLRQ
AA[00] L23 O A Memory Address. It is a 12-bit address bus.
AA[01] L22 O When used with SDRAM or SGRAM the memory address bus is also used to transfer
AA[02] L21 O configuration data and to perform bank select operations, so it is essential that the
AA[03] M23 O relevant address pins are connected to the corresponding address pins on the
AA[04] M22 O memories (it is not ok to swap the address pins).
AA[05] M21 O
AA[06] N23 O
AA[07] N22 O
AA[08] P23 O
AA[09] P22 O
AA[10] P21 O
AA[11] R23 O
ACAS# K21 O A Memory Column Address Select. Drives the CAS input of external memory.

Used on SDRAM/SGRAM memory configuration. On EDO or FPM DRAMs,
the DRAM’s CAS lines should be connected to ADQM# lines.

ACS#[0] B23 O Chip select signals for memory banks. These lines are needed on large memory
ACS#[1] B22 O configurations. The chip selects are decoded so that the first memory device should
ACS#[2] AB23 O be connected to the ACS#[0], the second to the ACS#[1] etc.
ACS#[3] AC23 O
ADQ[00] AA21 I/O 32-bit A-memory Data Bus.
ADQ[01] AA22 I/O The normal configuration for the A-Data Bus is 32 bits wide (+ 32 bits for the B-Data
ADQ[02] AA23 I/O Bus), but it is possible to create a system with 16 (+ 16) wide interface when using
ADQ[03] Y22 I/O SDRAM as the basic element of the memory subsystem.
ADQ[04] Y23 I/O
ADQ[05] W21 I/O
ADQ[06] W22 I/O
ADQ[07] W23 I/O
ADQ[08] V21 I/O
ADQ[09] V22 I/O
ADQ[10] V23 I/O
ADQ[11] U21 I/O
ADQ[12] U22 I/O
ADQ[13] U23 I/O
ADQ[14] T21 I/O
ADQ[15] T22 I/O
ADQ[16] H23 I/O
ADQ[17] G21 I/O
ADQ[18] G22 I/O
ADQ[19] G23 I/O
ADQ[20] F21 I/O
ADQ[21] F22 I/O
ADQ[22] F23 I/O
ADQ[23] E21 I/O
ADQ[24] E22 I/O
ADQ[25] E23 I/O
ADQ[26] D20 I/O
ADQ[27] D21 I/O
ADQ[28] D22 I/O

rev. 1.03 08.03.00

���

$�PHPRU\�6LJQDOV

6LJQDO�QDPH 3LQ 0RGH 'HVFULSWLRQ
ADQ[29] D23 I/O
ADQ[30] C22 I/O
ADQ[31] C23 I/O
ADQM#[0] K23 O A-Memory Data Byte Enables. These are connected to the DQM lines of the SDRAM
ADQM#[1] K22 O or SGRAM, and to the CAS lines of EDO or FPM DRAMs.
ADQM#[2] R22 O
ADQM#[3] T23 O
Amemclk H22 O A Memory Clock. It is the clock output for memory synchronization used by

synchronous memories. For non-synchronous memory, this signal is not used.
Amemclkin H21 I A Memory Clock Input. Used for controlling the latch in of the external data.

This pin must be connected to the Amemclk pin. The connection must be made even
in configurations with non-synchronous memories.

ARAS# J22 O A-Memory Row Address Select. Drives the RAS input of external (either synchronous
or non-synchronous) memory.

AWE# J23 O Write Enable. Drives the WE# input of external (synchronous or non-synchronous)
memory.

������� %�0HPRU\�6LJQDOV

%�PHPRU\�6LJQDOV

6LJQDO�QDPH 3LQ 0RGH 'HVFULSWLRQ
BA[00] N1 O B-Memory Address. It is a 12-bit address bus.
BA[01] N2 O When used with SDRAM or SGRAM the memory address bus is also used to transfer
BA[02] N3 O configuration data and to perform bank select operations, so it is essential that the
BA[03] M1 O relevant address pins are connected to the corresponding address pins on the
BA[04] M2 O memories (it is not ok to swap the address pins).
BA[05] M3 O
BA[06] L1 O
BA[07] L2 O
BA[08] K1 O
BA[09] K2 O
BA[10] K3 O
BA[11] J1 O
BCAS# P3 O B-Memory Column Address Select. Drives the CAS input of external memory.

Used on SDRAM/SGRAM memory configuration. On EDO or FPM DRAMs,
the DRAM’s CAS lines should be connected to ADQM# lines.

BCS#[0] AB1 O Chip select signals for memory banks. These lines are needed on large memory
BCS#[1] AB2 O configurations. The chip selects are decoded so that the first memory device should
BCS#[2] B1 O be connected to the BCS#[0], the second to the BCS#[1] etc.
BCS#[3] A1 O
BDQ[00] C3 I/O 32-bit B-Memory Data Bus.
BDQ[01] C2 I/O The normal configuration for the B-Data Bus is 32 bits wide (+ 32 bits for the A-Data
BDQ[02] C1 I/O Bus), but it is possible to create a system with 16 (+ 16) wide interface when using
BDQ[03] D2 I/O SDRAM as the basic element of the memory subsystem.
BDQ[04] D1 I/O
BDQ[05] E3 I/O
BDQ[06] E2 I/O
BDQ[07] E1 I/O
BDQ[08] F3 I/O

rev. 1.03 08.03.00

���

%�PHPRU\�6LJQDOV

6LJQDO�QDPH 3LQ 0RGH 'HVFULSWLRQ
BDQ[09] F2 I/O
BDQ[10] F1 I/O
BDQ[11] G3 I/O
BDQ[12] G2 I/O
BDQ[13] G1 I/O
BDQ[14] H3 I/O
BDQ[15] H2 I/O
BDQ[16] T1 I/O
BDQ[17] U3 I/O
BDQ[18] U2 I/O
BDQ[19] U1 I/O
BDQ[20] V3 I/O
BDQ[21] V2 I/O
BDQ[22] V1 I/O
BDQ[23] W3 I/O
BDQ[24] W2 I/O
BDQ[25] W1 I/O
BDQ[26] Y4 I/O
BDQ[27] Y3 I/O
BDQ[28] Y2 I/O
BDQ[29] Y1 I/O
BDQ[30] AA2 I/O
BDQ[31] AA1 I/O
BDQM#[0] P1 O B-Memory Data Byte Enables. These are connected to the DQM lines of the SDRAM
BDQM#[1] P2 O or SGRAM, and to the CAS lines of EDO or FPM DRAMs.
BDQM#[2] J2 O
BDQM#[3] H1 O
Bmemclk T2 O B-Memory Clock. It is the clock output for memory synchronization used by

synchronous memories. For non-synchronous memory, this signal is not used.
Bmemclkin T3 I B-Memory Clock Input. Used for controlling the latching-in of the external data.

This pin must be connected to the Bmemclk pin. The connection must be made even
in configurations with non-synchronous memories.

BRAS# R2 O B-Memory Row Address Select. Drives the RAS input of external (either synchronous
or non-synchronous) memory.

BWE# R1 O B-Memory Write Enable. Drives the WE# input of external (synchronous or
non-synchronous) memory.

rev. 1.03 08.03.00

���

������� 3&,�%XV�6LJQDOV

3&,�%XV�6LJQDOV

6LJQDO�QDPH 3LQ 0RGH 'HVFULSWLRQ
PCI_AD[00] AB22 I/O 32-bit multiplexed Address and Data Bus.
PCI_AD[01] AC22 I/O
PCI_AD[02] AB21 I/O
PCI_AD[03] AC21 I/O
PCI_AD[04] AC20 I/O
PCI_AD[05] AB20 I/O
PCI_AD[06] AA19 I/O
PCI_AD[07] AB19 I/O
PCI_AD[08] AC19 I/O
PCI_AD[09] AB18 I/O
PCI_AD[10] AC18 I/O
PCI_AD[11] AA17 I/O
PCI_AD[12] AB17 I/O
PCI_AD[13] AC17 I/O
PCI_AD[14] AB16 I/O
PCI_AD[15] AA15 I/O
PCI_AD[16] AC11 I/O
PCI_AD[17] AA10 I/O
PCI_AD[18] AB10 I/O
PCI_AD[19] AC10 I/O
PCI_AD[20] AB9 I/O
PCI_AD[21] AA9 I/O
PCI_AD[22] AC9 I/O
PCI_AD[23] AB8 I/O
PCI_AD[24] AC7 I/O
PCI_AD[25] AB6 I/O
PCI_AD[26] AC6 I/O
PCI_AD[27] AB5 I/O
PCI_AD[28] AC5 I/O
PCI_AD[29] AA4 I/O
PCI_AD[30] AB4 I/O
PCI_AD[31] AC4 I/O
PCI_C/BE#[0] AA18 I/O Multiplexed Bus Command and Byte Enables.
PCI_C/BE#[1] AC16 I/O Used to transmit the command on the first cycle of the transaction and the byte
PCI_C/BE#[2] AB11 I/O enables on the following cycles.
PCI_C/BE#[3] AB7 I/O
PCI_CLK AA3 I PCI Clock Signal. Supports PCI clock frequencies in the range 0-33 MHz.

rev. 1.03 08.03.00

���

3&,�%XV�6LJQDOV

6LJQDO�QDPH 3LQ 0RGH 'HVFULSWLRQ
PCI_DEVSEL# AB13 I/O Device Select. Used by transaction target to indicate that it has decoded

a recognized address of the transaction.
PCI_FRAME# AC12 I/O Cycle Frame.Driven by the transaction initiator to indicate the beginning

and the duration of an access.
PCI_GNT# AB3 I Grant Bus Ownership. Indicates to the agent that the arbiter has granted access

to the bus when VS252 operates as a bus master.
PCI_IDSEL AC8 I Initialization Device select. Used as a chip select during the configuration transactions.

Note that configuration transactions do not use the normal PCI address decoding.
PCI_INTA# AC1 O Interrupt A. Indicates an interrupt request. The wiring of this interrupt line is

motherboard and operating system dependent. The interrupt is reset by
resetting the corresponding status register bit.

PCI_IRDY# AB12 I/O Initiator Ready. Indicates the initiating agent’s ability to complete the data phase of the
transaction, and is ready to transfer data on the current clock cycle. Pin direction
depends on whether VS252 is participating in the transfer as a target or as
an initiator.

PCI_PAR AB15 I/O Parity. Indicates even parity across PCI_AD[31:0] and PCI_C/BE#[3:0].
PCI_PERR# AB14 I/O Parity Error. Indicates a data parity error in AD, C/BE#, and PAR signal lines during

the data phase.
PCI_REQ# AC3 O Request bus ownership. Used when operating as the initiator for requesting bus

ownership; indicates to the arbiter that this agent desires use of the bus.
PCI_RST# AC2 I PCI Reset. Forces the PCI sequencer of VS252 to a known state.
PCI_SERR# AC15 I/O System Error. Reports address or data parity errors or any other catastrophic error.
PCI_STOP# AC14 I/O StopTransaction; used by the target when it needs to stop a transaction.

Typical usage does not indicate any kind of error condition.
PCI_TRDY# AC13 I/O Target Ready. Indicates the target agent’s ability to complete the current data phase,

and is ready to transfer data on the current clock cycle. Pin direction
depends on whether VS252 is participating in the transfer as a
target or as an initiator.

rev. 1.03 08.03.00

���

������� 6XSSO\�6LJQDOV

6XSSO\�6LJQDOV

6LJQDO�QDPH 3LQ 0RGH 'HVFULSWLRQ
gnd_core J21 power Core ground pads.
gnd_core R21 power
gnd_core AA20 power
gnd_core Y13 power
gnd_core AA12 power
gnd_core Y8 power
gnd_core R3 power
gnd_core J3 power
gnd_core C11 power
gnd_core C18 power
GND_diga E20 power Ground for A memory pads.
GND_diga G20 power
GND_diga J20 power
GND_diga M20 power
GND_diga P20 power
GND_diga V20 power
GND_diga Y21 power
GND_digp Y19 power Ground for PCI pads.
GND_digp Y16 power
GND_digp Y15 power
GND_digp AA13 power
GND_digp Y10 power
GND_digp AA6 power
GND_digp Y6 power
GND_digp AA5 power
GND_digb W4 power Ground for B memory pads.
GND_digb U4 power
GND_digb R4 power
GND_digb M4 power
GND_digb K4 power
GND_digb F4 power
GND_digb D3 power
GND_dac A2 power Ground for internal DAC.
GND_bias B4 power
VDD_dac C4 power Analog Vdd.
GND_DIG D5 power Ground for core.
GND_DIG D9 power
GND_DIG D14 power
GND_DIG D16 power
GND_DIG D18 power

D7 Not used.
vdd_core[0] K20 power Core Vdd.

vdd_core[1] R20 power
vdd_core[2] Y18 power
vdd_core[3] AA14 power
vdd_core[4] Y12 power
vdd_core[5] AA8 power
vdd_core[6] P4 power

rev. 1.03 08.03.00

���

6XSSO\�6LJQDOV

6LJQDO�QDPH 3LQ 0RGH 'HVFULSWLRQ
vdd_core[7] J4 power Core Vdd.

vdd_core[8] C9 power
vdd_core[9] C19 power
VDD_syn A5 power Vdd for PLL.
GND_syn B6 power Groung for PLL.
VDD_Clamp AA11 power Clamp diode terminal. Note 3.3 volt for AGP and 5 or 3.3 volt for PCI. See also pin A6
VDD_Clamp D4 power AGP / PCI in Miscellaneous Signals.
VDD_PADa F20 power Vdd for A memory pads.
VDD_PADa H20 power
VDD_PADa L20 power
VDD_PADa N21 power
VDD_PADa N20 power
VDD_PADa T20 power
VDD_PADa U20 power
VDD_PADa W20 power
VDD_PADb V4 power Vdd for B memory pads.
VDD_PADb T4 power
VDD_PADb N4 power
VDD_PADb L3 power
VDD_PADb L4 power
VDD_PADb H4 power
VDD_PADb G4 power
VDD_PADb E4 power
VDD_PADp Y20 power Vdd for PCI pads.
VDD_PADp Y17 power
VDD_PADp AA16 power
VDD_PADp Y14 power
VDD_PADp Y11 power
VDD_PADp Y9 power
VDD_PADp AA7 power
VDD_PADp Y7 power
VDD_PADp Y5 power
VDD_PADv D10 power Vdd for video pads.
VDD_PADv D11 power
VDD_PADv D12 power
VDD_PADv D13 power
VDD_PADv D15 power
VDD_PADv D17 power
VDD_PADv D19 power

rev. 1.03 08.03.00

���

���� (OHFWULFDO�6SHFLILFDWLRQV

����� (OHFWULFDO�&KDUDFWHULVWLFV�DQG�2SHUDWLQJ�&RQGLWLRQV

������� $EVROXWH�0D[LPXP�&RQGLWLRQV

Beyond these limits damage may occur to the device.

5[ODQN 2CTCOGVGT %QPFKVKQP /KP 6[R /CZ 7PKV

9 6XSSO\�YROWDJH ����� ��� 9
76 6WRUDJH�WHPSHUDWXUH ��� ��� �&

������� '&�2SHUDWLQJ�&RQGLWLRQV

Valid for 25 oC ambient temperature and 3.3 V supply unless otherwise stated.

5[ODQN 2CTCOGVGT %QPFKVKQP /KP 6[R /CZ 7PKV

9GG� 6XSSO\�YROWDJH ��� ��� ��� 9
9GG� 6XSSO\�YROWDJH ��� ��� ��� 9
$YG $QDORJ�6XSSO\�9ROWDJH ���� ��� ���� 9
&/. &U\VWDO�)UHTXHQF\ ������ 0+]

������� *HQHUDO�6SHFLILFDWLRQV
5[ODQN 2CTCOGVGT %QPFKVKQP /KP 6[R /CZ 7PKV

9
LO

77/�LQSXW�/2 9
GG�

 �����9 ���� ����
�9
GG

9
9

LK

77/�LQSXW�+, 9
GG�

 �����9 ����
�9
GG

9
GG�

����� 9

,
LO

,QSXW�OHDNDJH ����9
LQ

���9
GG

��� �� X$
9

RO

/RZ�/HYHO�2XWSXW SDG��,
RO�

 ������X$��9
GG�

 �����9� ����
�9
GG�

9

9
RK

+LJK�/HYHO�2XWSXW SDG��,
RK�

 ������X$��9
GG�

 �����9� ����
�9
GG

9

,
R]

+LJK�=�OHDNDJH ����9
LQ

���9
GG

��� �� X$

rev. 1.03 08.03.00

���

������� (OHFWULFDO�6SHFLILFDWLRQV

5[ODQN 2CTCOGVGT %QPFKVKQP /KP 6[R /CZ 7PKV

,9''
'LJLWDO 6XSSO\ &XUUHQW
�XVLQJ�&026��OHYHO�FORFN� 3RZHU�XS�5(6(7� �/RJLF�� ��� 7%$ P$

,$9'
$QDORJ�6XSSO\�&XUUHQW 3RZHU�XS�5(6(7� �/RJLF�� �� 7%$ P$

,9''3'
'LJLWDO�6XSSO\�&XUUHQW� 3RZHU�GRZQ�5(6(7� �/RJLF�� � u$

,$9'3'
$QDORJ�6XSSO\�&XUUHQW 3RZHU�GRZQ�5(6(7� �/RJLF�� � u$

����� 7LPLQJ�3DUDPHWHUV

������� 3&,�,QWHUIDFH

The PCI interface is designed to be compatible with PCI Local Bus Specification rev. 2.1.

WK

WYDO

&/.

6LJQDO�RXW

6LJQDO�LQ

5[ODQN 2CTCOGVGT /KP /CZ 7PKV

WVX ,QSXW�VHW�XS�WLPH�WR�&/.
EXVHG�VLJQDOV � QV
SRLQW�WR�SRLQW �� QV

WK ,QSXW�KROG�WLPH�IURP�&/. � QV
WYDO &/.�WR�RXWSXW�YDOLG�GHOD\

EXVHG�VLJQDOV � �� QV
SRLQW�WR�SRLQW � �� QV

rev. 1.03 08.03.00

���

������� 9LGHR�&DSWXUH

Video capture unit is designed to be working at least up to 35 MHz capture clock
frequencies.

WK

&DSWXUHBFON

6LJQDO�LQ

WVX

5[ODQN 2CTCOGVGT /KP /CZ 7PKV

WVX ,QSXW�VHW�XS�WLPH�WR�&/. � � QV
WK ,QSXW�KROG�WLPH�IURP�&/. � � QV

������� 0HPRU\�,QWHUIDFH

All timings are relative to the MEMCLK created by VS25203. Memory interface is
designated to be compatible with SGRAM and SDRAM devices with clock frequencies
up to 100MHz.

WK

WYDO

0(0&/.

6LJQDO�RXW

6LJQDO�LQ

WVX

5[ODQN 2CTCOGVGT /KP /CZ 7PKV

WVX ,QSXW�VHW�XS�WLPH�WR�&/. � QV
WK ,QSXW�KROG�WLPH�IURP�&/. � QV
WYDO &/.�IDOO�WR�RXWSXW�YDOLG�GHOD\ � � QV

rev. 1.03 08.03.00

���

������� 9LGHR�,QWHUIDFH

All timings are relative to the MEMCLK created by VS25203.

WG

WYDO

9&/.

6LJQDO�RXW

3&/.

5[ODQN 2CTCOGVGT /KP /CZ 7PKV

WG 3&/.�GHOD\�IURP�9&/. � � QV
WYDO &/.�IDOO�WR�RXWSXW�YDOLG�GHOD\ � � QV

rev. 1.03 08.03.00

���

����)XUWKHU�5HDGLQJV

3&,�/RFDO�%XV�6SHFLILFDWLRQ��UHY������
3&,�0XOWLPHGLD�'HVLJQ�*XLGH�UHY������
3&,�6\VWHP�'HVLJQ�*XLGH��UHY������

PCI Special Interest Group, PO Box 14070, Portland, OR 97214,
tel.no. 1 800 433 5177 (503 234 6762 int.) 1 503 234 6762 fax.

rev. 1.03 08.03.00

���

���� ,QGH[

A-bus, 126
apt_addr, 17
atex_conf1, 142
atex_conf2

amode, 144
ad, 143
am, 130, 143
aphig, 144
apwid, 144
asubs, 143
axl, 130, 143
ayl, 130, 143

ATTR10 - Attribute Controller Mode, 201
ATTR11 - Overscan Color Register, 202
ATTR12 - Color Plane Enable Register, 203
ATTR13 - Horizontal Pixel Panning, 203
ATTR14 - Color Select Register, 204
ATTRIDX - Attributer Index, 200
ATTRPAL - Palette Registers, 200
atu_dx, 110
atu_dy, 110
atu_init, 110
atv_dx, 111
atv_dy, 111
atv_init, 111
back porch, 209
base_addr

cbaseb, 145
zbaseb, 145

B-bus, 126
bilin, 140
bilinear interpolation, 127
BIOS, 12, 16, 18
blend unit, 126
Blt_bg_color, 223
Blt_fg_color, 223
Blt_params, 224
Blt_size, 225
Blt_src_addr, 224
blt_src_strd, 222
Blt_tgt_addr, 225
blt_tgt_strd, 223
boot, 18
btex_conf2, 145

bm, 130
bxl, 130
byl, 130

btu_dx, 112
btu_dy, 112
btu_init, 112
btv_dx, 113
btv_dy, 113
btv_init, 113
bump-mapping, 147
capt_base_conf, 220
capt_w_h, 221
cb_dx, 108
cb_dy, 108

cb_init, 108
C-bus, 126
cfg0

cache_ls, 26
hdr_type, 26
lat_tim, 26

cfg1
int_line, 28
int_pin, 28
max_lat, 28
min_gnt, 28

cg_dx, 107
cg_dy, 107
cg_init, 107
class_rev

class_code, 26
revision_id, 26

clock frequency parameters, 153
clock synthesizer, 230
coef_reg1, 141
coef_reg2, 142
coef_reg3, 142
color_op, 131
core_clk_cfg

m_coef, 29
n_coef, 29
no, 28
r_coef, 29

CPDATA - Color Palette Data, 206
CPMASK - Color Palette Mask, 207
CPRADDR - Color Palette Read Address, 205
CPSTATE - Color Palette State, 207
CPWADDR - Color Palette Write Address, 205
cr_dx, 106
cr_dy, 106
cr_init, 16, 106
cread, 134
CRTC00 - Horizontal Total, 170
CRTC01 - Horizontal Display End, 171
CRTC02 - Horizontal Blanking Start, 171
CRTC03 - Horizontal Blanking End, 172
CRTC04 - Horizontal Sync Start, 173
CRTC05 - Horizontal Sync End, 173
CRTC06 - Vertical Total, 174
CRTC07 - CRTC Overflow Register, 175
CRTC08 - Preset Row Scan, 176
CRTC09 - Character Cell Height, 177
CRTC0A - Cursor Start, 178
CRTC0B - Cursor End, 179
CRTC0C - Start Address High, 179
CRTC0D - Start Address Low, 180
CRTC0E - Cursor Location High, 180
CRTC10 - Vertical Sync Start, 181
CRTC11 - Vertical Sync End, 182
CRTC12 - Vertical Display End, 183
CRTC13 - Offset Register, 183
CRTC14 - Underline Register, 184
CRTC15 - Vertical Blank Start, 185

rev. 1.03 08.03.00

���

CRTC16 - Vertical Blank End, 185
CRTC17 - Mode Control Register, 186
CRTC18 - CRTC Line Compare, 187
CRTC40 - CRTC Extension Register 1, 188
CRTC41 - CRTC Extension Register 2, 189
CRTC42 - CRTC Extension Register 3, 190
CRTC43 - CRTC Extension Register 4, 191
CRTC44 - Read Bank Start Address, 191
CRTC45 - Write Bank Start Address, 192
CRTCINDEX - CRTC Register Index, 170
CRTCOF - Cursor Location Low, 181
ct_dx, 109
ct_dy, 109
ct_init, 109
ctrl_reg_bar, 16, 27
DAC, 226
debug_reg, 41
depth value, 115
direct, 20
dither, 126, 146, 147
edge ordering, 116
edge_order, 116
edge0 interpolator, 117
edge0_dx, 117
edge0_dy, 117
edge0_init, 116, 117
edge1 interpolator, 118
edge1_dx, 118
edge1_dy, 118
edge1_init, 118
edge2 interpolator, 119
edge2_dx, 119
edge2_dy, 119
edge2_init, 119
EPROM, 227
exp_rom_bar

rom_bar, 27
ext_io_reg

eie, 42
extra_in_data, 42
extra_out_data, 42
tm, 42
usr_io_ena, 42

ext_io_reg2
edbe, 42
extra_out_data_b, 42
usr_io_e2, 42

External VideoDAC, 12
extra I/O pins, 41
fast clear, 148
feat_reg, 217
feat_reg -register, 34
ffe, 217
ffm, 217
fft, 217
FIFO, 126
frame_mode

cm, 149
fce, 148
fcv, 148
osat, 148
rtr, 148

zeq, 148
zm, 149

Geometry Processor
Arithmetic instructions (AUs), 65

A-loads, 67
AU_OP, AU_OP2, AU_OP01, 66
AU12, 69
AU6, 70
M-load, 68
R-loads, 69

Arithmetic Unit input registers
A0, A1, A2, 60
M0, M1, M2, 60
R0, R1, R2, 60
X0, X1, X2, 59
Y0, Y1, Y2, 59

Branch instructions
BRANCH, 88
Program address space, 87
Using the Precache instruction, 87

Branch instructions, 54, 86
CODEBASE register, 54, 57, 87, 97, 99
Control registers

JMPREG, 62
N, 62
PC, 62
REGBASE, 62
VTMB, 57, 62

Derive VTMB instruction, 92
Direct stream data, 101
Division instruction, 93
General Move instructions, 82

IMMED, 84
MOVE_REG, 82
SIMMED, 85

Index registers
WRBASE0, -1 and -2, 61
XRDBASE0, -1 and -2, 61
YRDBASE0, -1 and -2, 61

Logic instructions
LOGIC, 80

Miscellaneous instructions
OUT, 89
WR_STRM and SWR_STRM, 90

Miscellaneous instructions, 89
RD_STRM, 90

Normalize instruction, 92
Parellel Move instructions

LOAD, 72
LOAD_SAVE, 79
SAVE, 76
SLOAD, 74

RETURN instruction, 92
Special AU instructions, 93
Special instruction (SPEC), 92
STATUS register, 63
stream I/O, 100
Stream registers

stream data high, - low, 61
Stream Read address, 61, 100
Stream Write address, 61, 100

Wait, 56

rev. 1.03 08.03.00

���

Geometry Processor, PCI Registers
192 synchronization register, 96
193 code_config register, 97
194 Status_reg_in register

blti, 98
gp0, 98
gpf, 98
gpi, 98
id1, 98
id2, 98
ok1, 98
ok2, 98
pv, 98
vc, 98
video_y_coord, 98

196 Data_in register, 98
197 Data_out register, 99

GFX0 - Set / Reset Register, 193
GFX1 - Enable Set / Reset Register, 194
GFX2 - Color Compare, 194
GFX3 - Data Rotate, 195
GFX4 - Read Map, 196
GFX5 - Mode Register, 196
GFX6 - Miscellaneous Register, 197
GFX7 - Color Don’t Care, 198
GFX8 - Write Mask, 199
GFXINDEX - Graphic Register Index, 193
gr_ram_bar, 17, 26, 38
grid mask, 121
grid_reg

B texture quad loop, 121
rendering screen height/32, 121

grid_reg
A texture quad loop, 121
A_not_Umsb, 121
A_not_Vmsb, 121
B_not_Umsb, 121
B_not_Vmsb, 121
constant_perspective, 121
grid mask, 121
Rendering screen height/32, 121

halt, 23
id_reg

device_id, 25
vendor_id, 25

Internal VideoDAC, 12
interrupts, 35
io_reg, 41
IRQs, 35, 160
jump, 21
linear mode, 17
Logic unit, 127
logic_op, 133
ma_cmd_addr, 37
ma_ext_addr -register, 38
ma_int_addr -register, 38
master_state

master_cnt, 37
master_st, 37

mem_apt0_cfg
apt0_addr, 43
apt0_height, 43

apt0_width, 43
bs0, 43
m0, 43
rl0, 43
ws0, 43

mem_apt1_cfg, 44
mem_cfg -register, 29
memory

EDO DRAM, 44
SDRAM, 44
SGRAM, 44

MIP-mapping, 126, 129
modulation, 147
overflow, 148
p interpolator, 122
p_dx, 122
p_dy, 122
p_init, 122
palette, 140
palette_base, 149
PCI, 154
PCI BIOS, 12, 16, 18
PCI bus, 18
PCI stream command

direct, 20
halt, 23
jump, 21
read, 22, 38
wait, 23

PCI stream handling, 19
perspective correction, 122
ppu_code_start

start_addr, 149
ppu_mode

nd, 147
s, 148
shr, 147
sok, 147
st_oper, 148
tsk, 148

raster transparency, 148
raster_ext

rst, 124
raw mode, 17
read, 22, 38
ref_reg, 39

vgaq, 40
video_y_ref, 39, 40
vq, 40

reg_acc_addr -register, 33
reg_acc_data -register, 33
register map, 13
screen_w_h

screen_h, 212
screen_w, 212

SEQ0 - Sequencer Reset, 165
SEQ1 - Clocking Mode, 166
SEQ2 - Plane Mask, 167
SEQ3 - Character Map Select, 168
SEQ4 - Memory Mode, 169
SEQINDEX - Sequencer Index Register, 165
shading program, 126, 129

rev. 1.03 08.03.00

���

status -register
blti, 40
capi, 39
gp0, 40
gpf, 40
gpi, 39
id1, 40
id2, 40
mi, 39
ok1, 40
ok2, 40
pv, 39
vc, 40
vi, 39
video_y_coord, 39

status_cmd
command, 25
status, 25

stencil, 148
stipple_blend, 132
sub_id

sub_id, 27
sub_ven_id, 27

textfetch, 137
textfetch_modulate, 138, 147
Texture fetch unit, 126, 127
Timing Parameters, 243
tlogic, 140
TMP1-3, 126
transparency skip, 147
trilinear interpolation, 127
wait, 23
VGA

general registers
FEATCTRL - Feature Controller, 162
INPUTS0 - Input Status 0, 163
INPUTS1 - Input Status 1, 164
MISCOUT - Miscellaneous Output Register, 160

video_base_conf
mh, 215
scr_addr, 215

video_bit_config
dpl, 216

dpp, 216
hbm, 216
hbp, 216
hsp, 216
pw, 216
vbp, 216
vsp, 216
vwm, 216

video_clk_cfg
m_coef, 33
n_coef, 33
r_coef, 33

video_hblank
hblank_end, 213
hblank_start, 214
hbp, 216

video_hsync
hsp, 216
hsync_end, 214
hsync_start, 215

video_w_h
video_h, 212
video_w, 212

video_vblank
vblank_end, 213
vblank_start, 213
vbp, 216

video_vsync
vsp, 216
vsync_end, 214
vsync_start, 214

video_y_ref, 40
y_end, 116, 123
y_init, 116, 123
z equal compare, 148
z interpolator, 115
z_dx, 115
z_dy, 115
z_init, 115
z_shr, 114
zread, 135
zwrite, 136

